
Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 1

Introduction, CSS Overview , CSS Rules, Example with Type Selectors and the Universal

Selector, CSS Syntax and Style, Class Selectors, ID Selectors, span and div Elements, Cascading,

style Attribute, style Container, External CSS Files, CSS Properties, Color Properties, RGB

Values for Color, Opacity Values for Color, HSL and HSLA Values for Color, Font Properties,

line-height Property, Text Properties, Border Properties, Element Box, padding Property, margin

Property , Case Study: Description of a Small City’s Core Area.

Module 3: Cascading Style Sheets (CSS)

Introduction
If you think appearance and format aren’t all that important, think again. If your web page doesn’t

look good, people might go to it, but they’ll leave quickly. An early exit might

be OK if you’re helping Grandma post her cat videos, but it’s unacceptable for a business trying

to generate revenue.

We put those things into practice by applying CSS rules to various elements, including

span and div elements. We show you how to position those rules (1) at the top of the web page’s

main file or (2) in an external file. In the second half of the chapter, we describe CSS properties.

Properties are the hooks used to specify the appearance of the elements within a web page.

Specifically, we introduce CSS properties for color, font, and line height. Also, we introduce CSS

properties for borders, padding, and margins.

CSS Overview
The W3C’s philosophy in terms of how HTML and CSS should fit together is (1) use HTML

elements to specify a web page’s content, and (2) use CSS to specify a web page’s appearance.CSS

code is normally separated from web page content code. Specifically, web page content code goes

in the body container, whereas CSS code goes either at the top of the web page in the head

container or in an external file. Why is that separation strategy a good thing? Because if you want

to change the appearance of something, it’s easy to find the CSS code—at the top of the web page

or in an external file.

CSS Rules
The way CSS works is that CSS rules are applied to elements within a web page. Browsers

determine which elements to apply the CSS rules to with the help of selectors. There are Quite a

few different types of selectors. For now, we’ll introduce type selectors and the Universal selector.

Type selectors are very popular. The universal selector is not as popular.

With a type selector, you use an element type (e.g., hr) to match all instances of that element

type and then apply specified formatting features to those instances. For example, the following

CSS rule uses a type selector with the hr element type and applies a width of 50% to all the hr

elements in the current web page:

hr {width: 50%;}
A “width of 50%” means that for each hr element, its horizontal line will span 50% of the width

of its enclosing container. Usually, but not always, the enclosing container will be the web

page’s body container.

Now for another type of selector—the universal selector. The universal selector uses the

same syntax as the type selector, except that instead of specifying an element type, you specify *.

The asterisk is a wildcard. In general, a wildcard is something that matches every item in a

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 2

collection of things. For CSS selector rules, the * matches every element in a web page’s

collection of elements. Here’s an example universal selector CSS rule that centers

The text for every text-oriented element in the web page:

* {text-align: center;}

Even though the rule matches every element, because the property (text-align) deals with

text, the rule affects only the elements that contain text.

Example with Type Selectors and the Universal Selector

Figure 3.1 Source code for tree poem web page

Study the source code in Figure 3.1’s Tree Poem web page. Notice the three CSS rules inside the

style container. The first two rules should look familiar because they were presented in the previous

section. The third rule uses a type selector with a slightly different syntax than before—there’s a

comma between two element types, h2 and p. If you want to apply the same formatting feature(s)

to more than one type of element, you can implement that with one rule, where the element types

appear at the left, as part of a comma- separated list
In Figure 3.1’s three CSS rules, notice the four property-value pairs inside the {}’s,

and copied here for your convenience:

◗ text-align: center

◗ width: 50%

◗ font-style: italic

◗ color: blue

In the Tree Poem web page, the * {text-align: center;} rule causes the elements that contain

text to be centered. The hr element does not contain text, so it’s not affected by the text align

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 3

property. Nonetheless, as you can see, it’s also centered. That’s because hr elements are centered

by default.

The hr {width: 50%;} rule causes the horizontal line to render with a width that’s 50% of

the web page body’s width.

Finally, the h2, p {font-style: italic; color: blue;} rule causes the heading and paragraph

elements to be italicized and blue.

CSS Syntax and Style
CSS Syntax
In this section, we address CSS syntax details. First—the syntax for the style container. Refer

back to Figure 3.1 and note how the three CSS rules are enclosed in a style container. Here’s the

relevant code:

<style>

 * {text-align: center;}

 hr {width: 50%;}

 h2, p {font-style: italic; color: blue;}

</style>

It’s legal to position it in the body container, but don’t do it. Coding conventions suggest

positioning it at the bottom of the web page’s head container. By following that convention,

other web developers will be able to find your CSS rules quickly. In the style start tag, it’s legal

to include a type attribute with a value of "text/css", like this:

<style type="text/css">

CSS Style
Now we’ll look at some CSS guidelines that are not enforced by browsers or the HTML5

standard. They are style guidelines, and you should follow them so your code is easy to

understand and maintain.

For short CSS rules, use this format:

Block formatting for CSS rules is similar in that the first and last lines are aligned at the left, and

interior lines are indented. If you have a CSS rule that’s kind of long (at least two or three

property-value pairs), you should use block formatting like this:

With both short and long CSS rules, the W3C CSS standard allows you to omit the semicolon

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 4

after the last property-value pair. However, coding conventions suggest that you should not omit

the last semicolon—you should include it. That way, if another property-value pair is added later

on, there will be less likelihood of accidentally forgetting to add a semicolon in front of the new

property-value pair.

Class Selectors
Class Selector Overview
So far, we’ve talked about type selectors and the universal selector. We’re now going to talk about

a third type of CSS selector—a class selector. Let’s jump right into an example. Here’s a class

selector rule with .red for its class selector and a background tomato color for matched elements:

The dot thing (.red in this example) is called a class selector because its purpose is to select

elements that have a particular value for their class attribute. So the class selector rule would

select/match the following element because it has a class attribute with a value of red:

<q class="red">It is better to keep your mouth closed and let people

think you are a fool than to open it and remove all doubt.</q>

In applying the class selector rule to this element, the quote gets displayed with a tomato

background color.

As with type selectors, you can have more than one class selector share one CSS rule.

Just separate the selectors with commas and spaces, like this:

.red, .conspicuous, h1 {background-color: tomato;}

Note that in addition to a second class selector (.conspicuous), there’s also a type selector

(h1). In a single CSS rule, you can have as many comma-separated selectors as you like, all sharing

the same set of property-value pairs.

With a type selector, your selector name (h1 in the this example) comes from the set of

predefined HTML element names. But for a class selector, you make up the selector name. When

you make up the selector name, make it descriptive, as is the case for red and conspicuous in the

preceding example. As an alternative for red, you could get even more descriptive and use tomato.

If you use tomato, that will be the same as the name used by the property value. There isn’t

anything wrong with that. Consistency is good.

Now let’s look at class selectors in the context of a complete web page. In Figure 3.3, note

the three CSS rules with their class selectors .red, .white, and .blue. Then take a look at the three

q elements and their class attribute clauses class="red", class="white", and class="blue". Try to

figure out what the web page will display before moving on to the next paragraph. In Figure 3.3,

the first q element has a class attribute value of red, which means the .red CSS rule applies. That

causes the browser to display the first q element with a tomato-colored background.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 5

I used a standard red background initially, but I found that the black text didn’t show up very well.

Thus, I chose tomato red, since it’s lighter, and the color reminds me of my cherished home-grown

tomatoes. Moral of the story: Get used to trying things out, viewing the result, and changing your

code if appropriate.

The second and third q elements have class attribute values of white and blue. As you can

see from the source code, that means they get matched with the .white and .blue class selector

rules, and they get rendered with white and skyblue backgrounds, respectively. Take a look at

Figure 3.4 and note the red, white, and blue background colors for the three quotes.

In addition to the three class selector rules, the Mark Twain Quotes web page also has a

type selector rule, q {font-family: Impact;}. We’ll discuss the font-family property later in his

chapter, but for now, look at the Mark Twain quotes web page and observe the thick block

lettering for the three q elements. That lettering is from the Impact font.

Usually, browsers use a default background color of white, so why did we specify

white for the second q element’s background color? One benefit is that it’s a form of self-

documentation. Another benefit is that it would handle a rogue browser with a nonwhite default

background color. With such a browser, if there were no explicit CSS rule for the white background

color, then the user would see red, nonwhite, and blue.

class Selectors with element type prefixes
element-type.class-value {property1: value; property2: value;}

And here’s an example CSS rule that uses a class selector with an element type prefix:

q.blue {background-color: skyblue;}

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 6

Because q.blue has .blue in it, q.blue matches elements that have a class attribute value of "blue".

But it’s more granular than a standard class selector in that it looks for class="blue"

only in q elements.

Figure 3.5 shows a modified version of the style container for the Mark Twain Quotes web

page. It uses four class selectors with element type prefixes. How will that code change the

appearance of the web page, compared to what’s shown in Figure 3.4? The original style container

used the simple class selector rule .blue {background-color: skyblue;}. That caused all elements

with class="blue" to use the CSS color named skyblue. But suppose

you want a different shade of blue for the “Mark Twain Quotes” header. You could use a distinct

class attribute value for the header, like “header-blue,” but having such a specific class attribute

value would be considered poor style because it would lead to code that is harder to maintain.

Specifically, It would be hard to remember a rather obscure name like “header-blue.” So, what’s

the better approach? As Shown in Figure 3.5, it’s better to use separate h1.blue and q.blue class

selectors with element type prefixes. Note how the h1.blue rule specifies a background color of

blue, and the q.blue rule specifies a background color of skyblue.

Figure 3.5’s style container uses a class selector with an element prefix, q.red, whereas the

original style container used a simple class selector, .red. Because there’s only one element that

uses class="red", the .red class selector was sufficient by itself; however, using q.red (and also

q.white) makes the code parallel for the three q element colors. More importantly, using a class

selector with an element prefix makes the code more maintainable. Maintainable code is code that

is relatively easy to make changes to in the future. For example, suppose you decide later that you

want a different shade of red for an h2 element. You can do that by using q.red and h2.red.

Class Selectors with * prefixes
Instead of prefacing a class selector with an element type, as an alternative, you can preface a class

selector with an *. Because * is the universal selector, it matches all elements. Therefore, the

following CSS rule is equivalent to a standard class selector rule (with no prefix):

*.class-value {property1: value; property2: value;}

So what would the following CSS rule do?

*.big-warning {font-size: x-large; color: red;}

It would match all elements in the web page that have a class attribute value of big warning,

and it would display those elements with extra-large red font. In the preceding CSS rule, note the

hyphen in the *.big-warning class selector rule. HTML5 standard does not allow spaces within

class attribute values, so it would have been illegal to use *.big warning. If You want to use

multiple words for a class attribute value, coding conventions suggest that you use hyphens to

separate the words, as in big-warning.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 7

ID Selectors
An ID selector is similar to a class selector in that it relies on an element attribute value in searching

for element matches. As you might guess, an ID selector uses an element’s id attribute (as opposed

to a class selector, which uses an element’s class attribute). A significant feature of an id attribute

is that its value must be unique within a particular web page. That’s different from a class

attribute’s value, which does not have to be unique within a particular web page. The ID selector’s

unique-value feature means that an ID selector’s CSS rule matches only one element on a web

page.

Suppose you want the user to be able to link/jump to the “Lizard’s Lounge” section of your

web page. To do that, you’d need a link element (which we’ll discuss in a later chapter) and also

an element that serves as the target of the link. Here’s a heading element that could serve as the

target of the link:

<h3 id="lizards-lounge">Lizards Lounge</h3>

In this code, note the id attribute. The link element (not shown) would use the id attribute’s

value to indicate which element the user jumps to when the user clicks the link. For the jump to

work, there must be no confusion as to which element to jump to. That means the target element

must be unique. Using an id attribute ensures that the target element is unique.

let’s examine how to apply CSS formatting to an element with an id attribute. As always

with CSS, you need a CSS rule. To match an element with an id attribute, you need an ID selector

rule, and here’s the syntax:

The syntax is the same as for a class selector rule, except that you use a pound sign (#) instead of

a dot (.), and you use an id attribute value instead of a class attribute value.
How would the following ID selector rule affect the appearance of the Lizard’s

Lounge heading?

#lizards-lounge {color: green;}

This rule would cause browsers to display the Lizards Lounge heading with green font.

span and div Elements
No matter which selector you choose, you can apply it only if there’s an element in the web page

body that matches it. But suppose you want to apply CSS to text that doesn’t coincide with any of

the HTML5 elements. What should you do?

If you want to apply CSS to text that doesn’t coincide with any of the HTML5 elements,

put the text in a span element or a div element. If you want the affected text embedded within

surrounding text, use span (since span is a phrasing element). On the other hand, if you want the

text to span the width of its enclosing container, use div (since div is a block element).

See Figure 3.6 and note how the div and span elements surround text that doesn’t fit very

well with other elements. Specifically, the div element surrounds several advertising phrases that

describe Parkville’s world-famous Halloween on the River celebration, and the two span elements

surround the two costs, $10 and $15.

$10

In particular, note that there are two class selectors for the class attribute’s value—white and

orange background. As you’d expect, that means that both the white and orange background CSS

rules get applied to the span element’s content. Note that the two class selectors are separated with

spaces.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 8

In the Pumpkin Patch web page, there are competing CSS rules for the two costs, $10 and
$15. The div container surrounds the entire web page body, so it surrounds both costs, and it

attempts to apply its orange text rule to both costs. The first span container surrounds the first

cost; consequently, the first span container attempts to apply its white text rule to the first cost.

Likewise, the second span container surrounds the second cost; consequently, the second span

container attempts to apply its black text rule to the second cost. So, what colors are used for the

span text—white and black from the span containers or orange from the div container? As you

can see in Figure 3.7’s browser window, the “$10” cost text is white, and the “$15” cost text is

black. That means that the more local CSS rules (the two span rules) take precedence over the

more global CSS rule (the div rule). The span rules are considered to be more local because their

start and end tags immediately surround the cost content. In other words, their tags surround only

their cost content and no other content. The div rule is considered to be more global because its

start and end tags do not immediately surround the cost content. In other words, their tags surround

not only the cost content, but also additional content. This principle of locality, where local things

override global things, parallels the nature of the “cascading” that takes place in applying CSS

rules.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 9

Cascading
Traditionally, a “style sheet” is a collection of rules that assign appearance properties to structural

elements in a document. For a web page, a style sheet “rule” refers to a value assigned to a

particular display property of a particular HTML element.

Each stage/place has its own set of rules, and each set of rules is referred to as a style sheet.

With multiple style sheets organized in a staged structure, together it’s referred to as Cascading

Style Sheets. To handle the possibility of conflicting rules at different places, different priorities

are given to the different places. See Figure 3.8, which shows the places where CSS rules can be

defined. The higher priority places are at the top, so an element’s style attribute (shown at the top

of the CSS rules list) has the highest priority. We’ll explain the style attribute in the next section,

but let’s first do a cursory run-through of the other items in Figure 3.8’s list.

The next place for CSS rules is in the settings defined by a user for a particular browser

installation.

The last place for CSS rules, and the place with the lowest priority, is in the native default

settings for the browser that’s being used. As a programmer, there’s nothing you can do to

modify a browser’s native default settings.

style Attribute, style Container
style attribute
when you use the style attribute for CSS rules, those rules are given the highest priority. Here’s an

example element that uses a style attribute:

<h2 style="text-decoration:underline;">Welcome!</h2>

As you can see, using the style attribute lets you insert CSS property-value pairs directly in the

code for an individual element. So the preceding h2 element—but no other h2 elements would be

rendered with an underline.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 10

The style attribute is a global attribute, which means it can be used with any element. Even

though it’s legal to use it with every element, and you’ll see it used in lots of legacy code, you

should avoid using it in your pages. Why? Because it defeats the purpose of CSS—keeping

presentation separate from content.

Let’s imagine a scenario that demonstrates why the style attribute is bad. Suppose you

embed a style attribute in each of your p elements so they display their first lines with an

indentation (later on, you’ll learn how to do that with the text-indent property). If you want to

change the indentation width, you’d have to edit every p element. On the other hand, making such

a change is much easier when the CSS code is at the top of the page in the head container because

you only have to make the change in one place—in the p element’s class selector rule. If you make

the change there, it affects the entire web page.

style Container
The browser applies the CSS rules’ property values by matching the CSS rules’ selectors with

elements in the web page. Normally, you should have just one style container per page, and you

should put it in a web page’s head container. It’s legal to put a style container in the body, but

don’t do it because then it’s harder to find the CSS rules.

More specific rules beat more general rules. For example, if a style attribute designates a

paragraph as blue, but a rule in a style container designates paragraphs as red, then what color will

the browser use to render the paragraph? The style attribute’s blue color wins, and the browser

renders that particular paragraph with blue text. This principle of more specific rules beating more

general rules should sound familiar. It parallels the principle introduced earlier that says local

things override global things.

External CSS Files
Overview
In general, splitting up a big thing into smaller parts makes the thing easier to understand. To

improve understandability, you should consider moving your CSS rules to an external file. There

are two steps necessary to tie a web page to an external file that contains CSS rules. First, for the

external file to be recognized as a CSS file, the external file must be named with a .css extension.

Second, for the web page to access a CSS file’s CSS rules, the web page must use a link element

in the web page’s head container. The link element is a void element, so it’s comprised of just one

tag, with no end tag. Here’s the syntax:

<link rel="stylesheet" href="name-of-external-file">

Note the rel="stylesheet" attribute-value pair. rel stands for “relationship,” and its value

tells the browser engine what to do with the href file. Having a rel value of stylesheet tells the

browser engine to look for CSS rules in the href file and apply them to the current web page.

To justify the extra work of adding a link element to handle an external CSS file, typically

an external CSS file will be nontrivial. That means the file will contain at least five CSS rules

(usually a lot more), or it will be shared by more than one web page. Why is sharing an external

CSS file helpful? With a shared external CSS file, it’s easy to ensure

that all the web pages on your site follow the same common CSS rules. And if you want to change

those rules, you change them in one place, in the external file, and the change affects all the web

pages that share the external file.

CSS Properties

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 11

from prior examples, a CSS property specifies one aspect of an HTML element’s appearance. Note

the first keyword entry, :active. The keywords that start with a colon are known as pseudo-

elements.

Color Properties
The color property specifies the color of an element’s text. The background-color property

specifies the background color of an element. You can specify a color value using one of five

different formats.

 color name—for example, red

 RGB value—specifies amounts of red, green, and blue

 RGBA value—specifies red, green, and blue, plus amount of opacity

 HSL value—specifies amounts of hue, saturation, and lightness

 HSLA value—specifies hue, saturation, and lightness, plus amount of opacity

Color Names
The CSS3 specification defines 147 color names, and the major browsers support all those

colors

RGB Values for Color
RGB stands for red, green, and blue. An RGB value specifies the amounts of red, green, and

blue that mix together to form the displayed color. To specify an amount of a color, you

can use a percentage, an integer, or a hexadecimal number

percentage—0% to 100% for each color

integer—0 to 255 for each color

hexadecimal—00 to ff for each color

RGB Values with percentages
To specify an RGB value with percentages, use this format:

rgb(red-percent, green-percent, blue-percent)

Each percent value must be between 0% and 100%. Here’s an example class selector rule that

uses an RGB value with percentages:

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 12

Eggplants are dark purple, and that’s why we use eggplant in the preceding class selector rule.

If you want to specify black, then you need to use the least intensity (a value of 0%) for

each of the three colors

.black {background-color: rgb(0%,0%,0%);}

To specify white, you need to use the greatest intensity (a value of 100%) for each of the three

colors.

.white {color: rgb(100%,100%,100%);}

RGB Values with Integers
To specify an RGB value with integers, use this format:

rgb(red-integer,green-integer,blue-integer)

Each integer value must be between 0 and 255, with 0 providing the least intensity and 255

providing the most. Here are two class selector rules that use RGB values with integers:

light green- favorite 1, favorite2 produces a medium gray color

RGB Values with hexadecimal
With many programming languages, including HTML and CSS, numbers can be represented not

only with base-10 decimal numbers, but also with base-16 hexadecimal (hex) numbers. A

number system’s “base” indicates the number of unique symbols in the number system. base 16

(for the hexadecimal number system) means there are 16 unique symbols—0, 1, 2, 3, 4, 5, 6, 7,

8, 9, A, B, C, D, E, and F.

When specifying an RGB color value, you have choices. You can use percentages or

standard integers as described earlier, or you can use hexadecimal values. For hexadecimal RGB

values, you’ll need to use the format #rrggbb where:

rr = two hexadecimal digits that specify the amount of red

gg = two hexadecimal digits that specify the amount of green

bb = two hexadecimal digits that specify the amount of blue

With the percentage and integer RGB values, a smaller number for a particular color means

less of that color. Likewise, with hexadecimal RGB values, a smaller number means less of a

particular color. The smallest hexadecimal digit is 0, so 00 represents the absence of a particular

color. If all colors are absent, that’s black. Therefore, #000000 (00 for each of the three colors)

indicates black. The largest hexadecimal digit is f, so ff represents the greatest intensity of a

particular color. If all colors are maximally intense, that’s white. Therefore, #ffffff (ff for each of

the three colors) indicates white.

That means #ffbbbb is light red (otherwise known as pink), and it looks like this:

Opacity Values for Color
The fourth value, opacity, determines how opaque the color is, where opaque refers to the inability

to see through something. It’s the opposite of transparency. If the opacity value is 100%, that

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 13

means the color is completely opaque, and if there is content behind the color, that content gets

covered up. At the other extreme, if the opacity value is 0%, that means the color is completely

transparent. To specify an RGBA value, use one of these two formats:

rgba(red-integer,green-integer,blue-integer,opacity-number-between-0-and-1)

rgba(red-percent,green-percent,blue-percent,opacity-number-between-0-and-1)

For both formats, the fourth value specifies the opacity. The opacity value must be in the form of

a decimal number between 0 and 1, with 0 being completely transparent, 1 being completely

opaque, and .5 in between.

For the first format, each integer value must be between 0 and 255, with 0 providing the

least intensity and 255 providing the most. That should sound familiar because that was also the

case for integers with the rgb construct. For the second format, each percent value must be between

0% and 100%.

Figure 3.14’s Opacity Example web page illustrates what happens when a transparent

yellow color is placed on top of a red background—orange is formed. Before looking at the CSS

rules that generate the yellow colors, let’s first examine the CSS rule that generates the window’s

red background color:

Note the browser window’s first sentence and the CSS rule that generates its yellow background:

Next, note the browser window’s second sentence and the CSS rule that generates its orange

background:

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 14

HSL and HSLA Values for Color
Here’s the syntax:

hsl(hue-integer,saturation-percent,lightness-percent)

HSL stands for hue, saturation, and lightness. Hue is a degree on the color wheel shown in Figure

3.15. The wheel is a circle, so the wheel’s degrees go from 0 to 360. As you can see in the figure,

0 degrees is for red, 120 degrees is for green, and 240 degrees is for blue. For a circle, 0 degrees

is equivalent to 360 degrees. The second value in the hsl construct is the color’s percentage of

saturation. The W3C says 0% means a shade of gray, and 100% is the full color. The third value

in the hsl construct is the color’s percentage of lightness. A lightness value of 0% generates black,

regardless of the values for hue and saturation. A lightness value of 100% generates white,

regardless of the values for hue and saturation. A lightness value of 50% generates a “normal”

color.

Here’s an example CSS rule with an HSL color value:

That color forms a light shade of grayish green, and here’s what it looks like:

To add transparency to an RGB value by using the rgba

construct. Likewise, to add transparency to an HSL value, you can use the hsla construct. Here’s

the syntax:

hsla(hue-integer,saturation-percent,lightness-percent,opacity-number-between-0-and-1)

The fourth argument specifies the opacity. The opacity value must be in the form of a decimal

number between 0 and 1, with 0 being completely transparent and 1 being completely opaque.

Here’s an example CSS rule with an HSLA color value:

It’s the same as the earlier grayish-green color, except that this time, the grayish green blends with

the web page’s background color as a result of the 50% opacity value. With a default white web

page background, the result would be a lighter shade of grayish green, like this:

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 15

Font Properties
font refers to the characteristics of text characters—height, width, thickness, slantedness, body

curvatures, and endpoint decorations. That should make more sense later on when we present CSS

font property details and show examples. Specifically, you’ll learn about the font-style, font-

variant, font-weight, font-size, font- family, and font shorthand properties.

font-style property
The font-style property specifies whether the text is to be displayed normally or slanted.

These descriptions indicate a slight difference between the oblique and italic properties, with italic

tending to be more decorative. Most web developers use the value italic. Because italics are so

common, you should memorize the following technique for generating italics:

.italics {font-style: italic;}

As always, choose a name for the class selector that’s descriptive. Here, we chose the name italics

because it’s descriptive and easy. Upright (normal) characters are the default, so why would you

ever want to specify normal for the font-style property? Suppose you have a whole paragraph that’s

italicized and you want one word in the paragraph not italicized. To make that word normal (not

italicized), you can use font-style: normal.

font-variant property
The font-variant property specifies how lowercase letters are displayed.

Here’s an example that uses a small-caps CSS rule:

And here’s the resulting displayed text:

font-weight property
The font-weight property specifies the boldness of the text characters. With bolder and

lighter, the targeted text inherits a default fontweight value from its surrounding text, and then

the targeted text’s weight gets adjusted up or down relative to that inherited weight. For example,

if you specify a bold font weight for a paragraph, you can make a particular word within the

paragraph even bolder by Specifying bolder for that word’s font weight. Because boldfacing is

such a common need, you should memorize the following technique for making something bold:

.bold {font-weight: bold;}

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 16

font-size property
The font-size property specifies the size of the text characters.

Here’s an example class selector rule that uses the font-size property with an xx-large

value:

.huge-font {font-size: xx-large;}

The em unit’s name comes from the letter M. Originally, one em unit equaled the height of the

letter M.

Here are class selector rules that use the font-size property with em values:

.disclaimer {font-size: .5em;}

.advertisement {font-size: 3em;}

.5em value displays text that is half the size of normal text. The second rule is for advertisement

text, which is supposed to be annoyingly large to draw attention, and its 3em value displays text

that is three times the size of normal text.

font-family property
The font-family property allows the web developer to choose the set of characters that the browser

uses when displaying the element’s text. Here’s an example class selector rule that uses the font-

family property:

.ascii-art {font-family: Courier, Prestige, monospace;}

Note that with the font-family property, you should normally have a comma-separated list of fonts,

not just one font. In applying the preceding rule to elements that use “asci-art” for their class

attribute, the browser works its way through the font-family list from left to right, and uses the first

font value it finds installed on the browser’s computer and skips the other fonts. So if Courier and

Prestige are both installed on a computer, the browser uses the Courier font because it appears

further left in the list.

A generic font is a name that represents a group of fonts that are similar in appearance. For

example, monospace is a generic font, and it represents all the fonts where each character’s width

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 17

is uniform. Whenever you use a font-family CSS rule, you should include a generic font at the end

of the rule’s list of font names.

.ascii-art {font-family: Courier, Prestige, monospace;}

font Shorthand property
Fairly often as a web programmer, you’ll want to apply more than one of the prior font-related

properties to an element. You could specify each of those font properties separately, but there’s an

easier way. The font property can be used to specify all these more granular font properties— font-

style, font-variant, font-weight, font-size, line-height, and font- family. Here’s the syntax for a font

property-value pair:

As usual, the italics are the book’s way of telling you that the italicized thing is a description of

what goes there, so for a font property-value pair in a CSS rule, you would replace font-style value

with one of the font-style values, such as italic. The square brackets are the book’s way of telling

you that the bracketed thing is optional, so the font-style, font-variant, font-weight, and line-height

values are all optional. On the other hand, the font-size and font-family values have no square

brackets, so you must include them whenever you use the font property.

Here’s an example type selector rule that uses a font property:

line-height Property
It’s used to specify the vertical separation between each For example, in Figure 3.17, note the

sentence1 CSS rule with line-height: 2em. That rule causes its matching element to display its lines

with a vertical separation equal to twice the height of a normal character (remember, an em unit

represents the height of a normal character). Note the resulting double-spaced line heights in Figure

3.18’s displayed text. line of text in an element.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 18

Text Properties
with text properties, we’ll focus on appearance characteristics of groups of characters. Specifically,

here’s what’s on the agenda—text-align, text- decoration, text-transform, and text-indent.

text-align property

The text-align property specifies the horizontal alignment for a block of text If you use justify for

the text-align property, the browser stretches all the lines in a block of text, except for the block of

text’s bottom line. The bottom line uses left justification. That behavior mimics what you see for

paragraphs in newspapers and magazines, and that’s why justify is used primarily for p elements.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 19

text-decoration property
The text-decoration property specifies something decorative that is added to text.

Because underlining is so common, you should memorize the following technique for generating

an underline:

.underlined {text-decoration: underline;}

text-transform property
The text-transform property controls the text’s capitalization.

You might want to provide uppercase and lowercase buttons on your web page that allow users to

dynamically change the page so it displays all uppercase or all lowercase. You can implement that

with JavaScript and the text-transform property.

text-indent property
The text-indent property specifies the size of the indentation of the first line in a block of text. The

block’s second and third lines (and so on) are unchanged; that is, they do not get indented. If you

want to adjust all the lines in a block of text, use the margin property, not the text-indent property.

You’ll learn about the margin property later in this chapter.

The most appropriate way to specify a value for the text-indent property is to use em units.

Here’s an example type selector rule that uses the text-indent property:

p {text-indent: 4em;}

Border Properties

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 20

As expected, the border properties allow You to specify the appearance of borders that surround

elements. Specifically, we’ll describe the border-style, border-width, and border-color properties.

Then we’ll finish with the border shorthand property.

border-style property
The border-style property specifies the type of border that surrounds the matched element.

Here’s an example class selector rule that uses the border-style property to draw a dashed border:

.coupon {border-style: dashed;}

border-width property
The border-width property specifies the width of the border that surrounds the matched element.

If you ever use the border-width property, remember to use it in conjunction with the border-style

property. If you forget to provide a border-style property, then the default border-style value kicks

in, and the default value is none. With a border-style value of none, no border will be displayed.

Forgetting the border-style property is a very common bug.

CSS pixel values use px units. As with all the other CSS size values, CSS pixel values are

relative. If a user reduces the monitor’s resolution or zooms in on his or her browser, then each

CSS pixel expands, and elements that use CSS pixel units will likewise expand.

It’s pretty rare to need different widths for the different border sides, but be aware that the

feature does exist. If you specify four values for the border-width property, the four values get

applied to the border’s four sides in clockwise order, starting at the top. For example:

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 21

The border’s top side is thickest due to the 4px value. The right and left sides are both two pixels,

and the bottom side is missing due to the 0px value. If you specify three values, then the first value

applies to the top side, the second value applies to the left and right sides, and the third value

applies to the bottom side.

border-width: 4px 2px 0px;
If you specify just two values, then the first value applies to the top and bottom sides and the

second value applies to the left and right sides.

border-color property
The border-color property specifies the color of the border that surrounds the matched element.

There’s no new syntax to learn for the border-color property because it uses the same values as the

color property and the background-color property. Remember the types of values that those

properties use? Color values can be in the form of a color name, an RGB value, an RGBA value,

an HSL value, or an HSLA value.

For the border-color property to work, you must use it in conjunction with a border-style

property. That should sound familiar because we said the same thing about the border-width

property. In order to change the border’s color or change the border’s width, you must have a

visible border, and that’s done by using a border-style property.

border Shorthand property
If you want to apply more than one of the prior border-related properties to an element, you could

specify each of those properties separately, but there’s a more compact technique. The border

property is a shorthand notation for specifying a border’s width, style, and color in that order. Here

are two examples:

Element Box, padding Property, margin Property
Usually, borders have no gaps inside or outside of them. Sometimes that’s appropriate, but usually

you’ll want to introduce gaps to make the elements look comfortable, not cramped. To introduce

gaps around an element’s border, you need to take advantage of the element’s element box. Every

web page element has an element box associated with it.

As you can see in Figure 3.19, an element box has a border, padding inside the border, and a

margin outside the border. For most elements, but not all, the default border, padding, and margin

widths are zero. You can adjust the widths with the border-width, padding, and margin properties.

In Figure 3.19, the dashed lines indicate the perimeters of the margin and padding areas. When a

web page is displayed, only the border can be made visible; the dashed lines shown in the figure

are only for illustration purposes.

padding and margin properties
The padding property specifies the width of the area on the interior of an element’s border,

whereas the margin property specifies the width of the area on the exterior of an element’s border.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 22

.label {border: solid; padding: 20px; margin: 20px;}

Just as with the border-width property, you can specify different padding widths for the four

different sides. You can use multiple values with one padding property. Or you can use separate

padding side properties—padding-top, padding-right, padding-bottom, and padding-left.

Likewise, you can specify different margin widths for the four different sides. You can use multiple

values with one margin property. Or you can use separate margin side properties—margin-top,

margin-right, margin-bottom, and margin-left.

The margin and padding properties allow negative values. While a positive value forces

two elements to be separated by a specified amount, a negative value causes two elements to

overlap by a specified amount.

Example that Uses padding and margin properties
The padding property specifies the width of the area on the interior of an element’s border, whereas

the margin property specifies the width of the area on the exterior of an element’s borer. Usually,

the most appropriate type of value for the padding and margin properties is a CSS pixel value.

Here’s an example CSS rule that uses padding and margin properties:

.label {border: solid; padding: 20px; margin: 20px;}

Just as with the border-width property, you can specify different padding widths for the

four different sides. You can use multiple values with one padding property. Or you can use

separate padding side properties—padding-top, padding-right, padding-bottom, and padding-left.

Likewise, you can specify different margin widths for the four different sides. You can use multiple

values with one margin property. Or you can use separate margin side properties—margin-top,

margin-right, margin-bottom, and margin-left.

The margin and padding properties allow negative values. While a positive value forces

two elements to be separated by a specified amount, a negative value causes two elements to

overlap by a specified amount.

Example that Uses padding and margin properties
Let’s put this padding and margin stuff into practice in the context of a complete web page. Figure

3.20’s browser window shows span elements that could serve as labels for water faucet handles.

The borders are curved to form ovals. We’ll get to the implementation of the curved borders

shortly, but let’s first focus on the padding and margins.

Figure 3.21 shows the code for the Hot and Cold web page. Here’s the relevant code for

the padding and margins, where label is the class attribute value for both of the span elements:

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 23

The padding and margin properties both use values of 20px, which provides significant space on

the interior and exterior of the borders. So, here’s the deal vertical margins do work for inline block

elements. The span element is considered to be a standard inline element by default. By adding the

preceding display: inline block property-value pair to the label CSS rule. Now onto the curved

borders. The border-radius property allows you to specify how

much curvature you want at each of the four corners of an element. The default, of course, is to

have no curvature. To achieve curved corners, you need to specify the focal point for each of the

corners’ curves.

Web Programming Module 3: Cascading Style Sheets (CSS)

--

--
 pg. 24

Using a percentage for a Web page’s Margin
As indicated, you’ll normally want to use CSS pixel values for margin widths. However, it’s

sometimes appropriate to use percentage values instead of pixel values. Case in point—specifying

the margin around the entire web page.

Typically, browsers leave a small blank area on the four sides of the window, which is a

result of the body element having a default margin value of around 8 pixels. To change the body’s

mar gin from the default, you can provide a CSS rule for the body element’s margin property. It’s

OK to use a CSS pixel value, but if you want to have the web page’s margin shrink and grow when

the user resizes the browser window by dragging a corner, use a percentage value, like this:

body {margin: 10%;}

The 10% value indicates that the web page’s left and right sides will have margin widths

that each span 10% of the web page’s width. Likewise, the web page’s top and bottom sides will

have margin heights that each span 10% of the web page’s height.

When to Use the Different Length Units
 Use em for font-related properties (like font-size).

 Use px for properties that should be fixed for a given resolution, even if the element’s font

size changes or even if the containing element’s size changes. Typically, that means using

px for things like border properties and layout.

 Use % for properties that should grow and shrink with the size of the containing element

(like margins for the body element).

 Use absolute units sparingly—only when a fixed size is essential and the target device has

a high resolution.

Question bank

1. Briefly explain CSS Syntax and Style

2. Suppose you want to apply CSS to text that doesn’t coincide with any of the HTML5

elements. What should you do? Give an illustrative example.

3. What are the different methods used specify the RGB Values for Color explain any one

of them.

4. Discuss font-style, font-variant,

5. What are the different methods used specify the RGB Values for Color explain any one

of them.

6. Discuss font-style, font varient. font-weight properties of CSS.

7. Explain Text-align, text-decoration text-transform, and text-indent properties of CSS.

8. Explain briefly Element Box, padding Property, margin Property

9. with an example explain different levels of style sheets.

1. list the different selectors available in CSS and explain in detail.

2. Explain the need of cascade in CSS. Illustrate three principles of cascade with suitable

CSS script segments.

3. Explain class selector of CSS with relevant scripts.

4. Define CSS and list out its benefits with explanation

5. What are selectors? List and explain selectors with an example.

6. With example explain the location of styles.

7. Write the division <div> based HTML sematic structure elements.

8. Define CSS. Explain the location of styles.

9. Illustrate the CSS box model besuge to label each of the components of the box.

