
 

MODULE: FOUR 

OPEN CHANNEL FLOW 

Introduction:  

An open-channel may be defined as any geometrical section through which liquid flows with 

free surface as a result of gravity (Fig.2.1). Pressure is constant along the channel. The form of 

free surface is mainly governed by inertial and gravitational forces (Neglecting surface 

tension).  

Importance: The Knowledge of open-channel hydraulics is essential to the world. It finds 

application in the solution of problems related to several aspects of development of surface 

water resources. The engineer may be required to solve problems like design and construction 

of hydraulic structures, dispersion of pollutants, overland flow and sediment transport, in rivers 

requires the use of Principles of Open-channel flows. 

 



 

Fig.2.1 Uniform Flow in Open-Channel 

The natural drainage of water through numerous creek and river systems is a complex example 

of Open – channel flow. Other occurrences of open-channel flow are in irrigation canals, sewer 

lines that flow partially storm drains, street, gutters, the flow of small rivulets and sheets of 

water across fields of parking lots (Fig 2.2) 

 



Fig. 2.2 Examples of Open-Channel Flow 

COMPARISON BETWEEN PIPE FLOW AND OPEN-CHANNEL FLOW: The Character description and 

complexity of open-channel flow geometry is quite variable, as compared to pipe flow (Fig. 2.3). 

Because of complexities like these, most of the open-channel flow results are based on correlations 

obtained from model and full scale experiments. The formulae defining open channel flow behaviour 

are mainly empirical in nature as compared to pipe (pressure) flow.  

The comparison between pipe flow and open-Channel flow is given in Table 2.1 below: 

 

Fig. 2.3 Comparison between pipe flow and open – channel flow 

Sl. 

No 

Description Pipe flow Open – channel flow 

1 Identification Absence of a free surface It has free surface open to 

atmosphere 

2 Hydraulic gradient line 

( H.G.L) 

It is defined as the sum of 

pressure head and datum head 

i. e 
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The free surface of water itself 

represents the Hydraulic gradient line 

(HGL) 

3 Analytical Solution  Solution of pipe flow problems 

are normally simple and well 

defined 

Solution of open-channel flow is more 

complicated compared to pipe flow. 

In general the treatment of open-

channel flow is somewhat more 

empirical compared to pipe flow 

4 Variation of roughness 

configuration and 

cross-sectional shape 

Normally roughness and cross 

sectional shape do not vary in a 

wider range. 

Both roughness as well as cross 

sectional shape varies over a wide 

range 



5 Some example Flow of water, oil, gas 

In penstocks, industrial pipes, 

pipelines of water distribution 

Flow in canals, laboratory flumes, 

natural channels, rivers, partly filled 

sewer lines, gutters etc(Fig. 1.2) 

 

Classification of Open – Channel flow 

 

Steady or unsteady flow (Time as the criterion):  Flow in an open channel is said to be steady if the 

depth(y) discharge (Q) and mean velocity (V) at any section do not change with time. If these quantities 

change with time, the flow is said to be unsteady.  

Mathematically for steady flow,  
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Uniform and non-uniform flow (Space as the criterion): Open –channel flow is said to be uniform if 

the depth(y), discharge (Q) and mean velocity (V) remains the same at every section of the channel 

(Fig. 2.1).  If these quantities change along the length of the channel then, the flow is said to be non-

uniform or varied flow. Mathematically for uniform flow mathematically for uniform flow,  
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UNSTEADY 
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– Spatially Varied  

 

STEADY 
    –      Uniform 
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– Gradually Varied 
– Rapidly  Varied  
– Spatially Varied  

 

i)   Uniform Steady flow iii) Uniform unsteady flow 
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The different types of open-channel flow are summarized in Table 2.2  

Table – 2.2 Types of Open Channel Flow 

 

The following classifications are made according to change in flow depth with respect to time and 
space. 
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GVF   RVF   GVF 
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Figure 2.4 Types of flow in open channels 

 

 

Important Definitions:  

• Hydraulic radius “Rh” is defined by, 
P

A

PerimeterWetted

AreaWetted
Rh ==    

      (very rare in practice) 

ii) Non – Uniform steady flow 

a) Gradually varied flow (G.V.F) 
b) Rapidly varied flow    (R.V.F) 
c) Spatially varied Flow (S.V.F.) 

iv) Non-uniform unsteady flow 

a) Gradually varied flow (G.V.F) 
b) Rapidly varied flow    (R.V.F) 
c) Spatially varied Flow (S.V.F.) 



• Hydraulic Depth (D): It is defined as the ratio of wetted area (A) to Top width of water section (T)     

T

A
D =   

Properties of Open Channels: 

Artificial channels: These are channels made by man. They include irrigation canals, navigation canals, 

spillways, sewers, culverts and drainage ditches. They are usually constructed in a regular cross- 

section shape throughout – and are thus prismatic channels (they don’t widen or get narrower along 

the channel. In the field they are commonly constructed of concrete, steel or earth and have the 

surface roughnesses reasonably well defined (although this may change with age – particularly grass 

lined channels.) Analysis of flow in such well defined channels will give reasonably accurate results. 

Natural channels: Natural channels can be very different. They are neither regular nor prismatic and 

their materials of construction can vary widely (although they are mainly of earth this can possess 

many different properties.) The surface roughness will often change with time distance and even 

elevation. 

Consequently it becomes more difficult to accurately analyse and obtain satisfactory results for natural 

channels than is does for manmade ones. The situation may be further complicated if the boundary 

is not fixed i.e. erosion and deposition of sediments. 

 

2.2 Geometric properties of Rectangular, Triangular, Trapezoidal and Circular  



 

 

Channels:  For analysis various geometric properties of the channel cross-

sections are required. For artificial channels these can usually be defined 

using simple algebraic equations given ‘y’ the depth of flow. The 

commonly needed geometric properties are shown in the figure below 

and defined as: 

Depth (y) – The vertical distance from the lowest point of the channel 

section to the free Surface 

Stage (z) – the vertical distance from the free surface to an arbitrary 

datum 

Area (A) – the cross-sectional area of flow, normal to the direction of flow 

Wetted perimeter (P) – the length of the wetted surface measured 

normal to the direction of flow. 

Surface width (T) – width of the channel section at the free surface 

Hydraulic radius (R) – the ratio of area to wetted perimeter (A/P) 

Hydraulic mean depth (Dm) – the ratio of area to surface width (A/T) 

 

 

Rectangular Channel: 

Area ‘A’ = h × b, 
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a) Trapezoidal Channel :  
 



Area ‘A’ = (b+zh)h 
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b) Triangular Channel:  
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c) Circular Channel  
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2.3 Chezy’s equation, Manning’s equation: 

 

2.3.1 Chezy’s Equation: The mean velocity of a turbulent uniform open channel flow is obtained using 

the following concept.  

 

 

 

The uniform flow equations are in the following format 
yx

SCRV = in which x and y are 

components, and vary depending on uniform formula (Fig.2.5). 

  

 

Gravitational Force = Shear Force 



 

Fig. 2.5Shear stress in an Open Channel 

 

 

Driving force: gravity 

Resisting force: skin friction 

Balance     0 PL = g A L sin 

[Bed slope < 0:5]  

sin ~S0 (slope)], 0 = gAS0= P = gRhS0 = RhS0 

The shear stress 00 SRh =      Eq…2.1 

The Reynolds number in an open channel is given by
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h
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If Re > 1000 the flow in open-channel flow is Turbulent. Assuming a state of rough turbulent flow, as is 

the case for natural rivers and channels, one may write channels, one may write   0 α V2.For rough 

turbulent channel flow 

     0 = KV2  
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Chezy’s equation   0SRCV h=     Eq…2.2 

The Eq. 2.2 is known as Chezy’s equation after the French hydraulic engineer. Antoine Chezy who 

first proposed the formula around 1768 while designing a canal for Paris water supply. The constant 

‘C’in equation 2.2actually varies depending on Reynolds number and boundary roughness.  

 

2.3.2 Manning’s Equation: 

In 1889, Robert Manning’s, an Irish engineer proposed another formula for the evaluation of the Chezy 

coefficient (C), which was later simplified to: 
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From Equation 2.3 the Manning equation may be written as: 

Manning’s Equation    2
1

0
3
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SR
n

V h=    Eq…2.4 

Where Manning’s ‘n’ is a coefficient known as Kutter’s ‘n’, and is dependent solely on the boundary 

roughness. The Manning equation has the great benefits that it is simple, accurate and now due to it 

long extensive practical use, there exists a wealth of publicly available values of n for a very wide range 

of channels. 



 

Conveyance (K) 

Channel conveyance, K, is a measure of the carrying capacity of a channel. The K is really an 

Agglomeration of several terms in the Chezy’s or Manning's equation: 

0SRACQ h=      Eq….2.5 

   0SKQ =  

The value of hRACK =       Eq….2.6 

Use of conveyance ‘K’ may be made when calculating the discharge and stage in compound channels. 

It is also used for calculating the energy and momentum coefficients in compound channels. 

2.4 Problems – on Chezy’s equation, Manning’s equations: 

Solved Problems:  

Example: 1 

A concrete lined trapezoidal channel with uniform flow has a normal depth is 2m. The base width is 

5m and the side slopes are equal at 1:2. Manning's ‘n’can be taken as 0.015 And the bed slope S0 = 

0.001. Calculate Discharge (Q), Mean velocity (V) and Reynolds number (Re). Given ρ = 1000 kg/m3 



and Viscosity ‘µ’ = 1.14 X 10-3N-s/m2 

Solution: The section properties 

 

 

  

Using Manning’s Equation to get the discharge 

 

 

 

 

The mean velocity (V) can be obtained from continuity equation: Q = AV  

 

 

 

And the Reynolds number (Re =ρuRh/µ, Rh = A/P) 

 

 

Reynolds number is very large hence it is in the turbulent zone 

Example: 2 

 

A triangular gutter whose sides include an angle of 600 conveys water at a uniform depth of 300 mm.  

If the bed gradient is 1 in 150 find the discharge.  Take Chezy’s constant C= 55 m 1/2/s. 

        Water Level  

 

Ans: AB =CB=AC 

               =0.30 Sec 300 

      =0.3464m  

300m

m 

30

 

B 

C A 



 

Area of cross section of flow area 

 A = 
2

1
(0.3464) 0.30 

          =0.05196 m2. 

Wettedperimeter 

      P= 2 x 0.3464 m = 0.6928 m 

Hydraulic mean depth m075.0=
6928.0

05196.0
=

P

A
=Rh

 

 

Discharge 0hSRAC=Q  

  s/m
150

075.0
55x05196.0= 3

 

   

Q =0.0639m3/s=63.90 liters/sec 

Example: 3 

A triangular channel with an apex angle of 750 carries a flow of 1.2m3/s at a depth of 0.80 m.  If the 

bed slope is 0.009, find the roughness coefficient of the channel. 

 

Ans: y0 = Depth of flow = 0.80m 

Area   
2

75
tan8.0x2x80.0x

2

1
=A = 0.491m2 

 

Wetted perimeter P=2x0.8x sec 37.50 = 2.0168m 

 

   Rh = A/P = 0.243 m. 

20.1

)009.0(X)243.0(x)491.0(
=

Q
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2/13/22/1
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3/2

h
=0.0151. 

Example: 4 



A trapezoidal section has side slopes of 1 vertical to 1 horizontal and has to convey a dischargeof 

14m3/s.  The bed slope of the channel is 1 in 1000.  Chezy’s constant is 45 if the channel is unlined and 

is 70 if the channel is lined with concrete. Calculate the cost per meter length of providing the lining 

with and without lining and state which arrangement is economical? Given the cost per square metre 

of lining = Rs ‘x’. 

Ans: Given side slope‘s’ = 1, Bed Slope S0= 
1000

1
 

 

For the trapezoidal channel of best section following criteria has to be satisfied 

 

  1+sy=
2

sy2+b
2   1+1y=

2

xy1x2+b
2  

b+2d=2 2 y, b = (2 2 -2) y b=0.8284y 

A = d (b + s y) =y (0.8284y+1y) 

A = 1.8284y2 

 

The cost per square metre for the lined channel = Rsx 

 

Cost per cum of excavation = Rs3x 

 

Case (i) Unlined channel: Cost of Unlined channel 

Discharge   0hSRAC=Q =14 (given discharge) 

 

1.8284 y2 x 45 14=
1000

1

2

y
 

=y 2/5 4582841

200014

x.  



y = 2.252m 

A=1.8284 y2 = 1.8284 x 2.2522 = 9.9727 m2. 

 

Cost of excavation for 1 metre length of unlined channel  = 9.2727 x 1 x 3x 

= Rs27.8181 x 

 

Case (ii) Unlined channel: Cost of lined channel 

 

Discharge 0hSRAC=Q =14 

 

7082841 2
xd. 14=

1000

1

2

d
 

 

=25 /
d 7082841

200014

x.  d = 1.887 m 

 

A= 1.8284 d2 = 1.8284 x 1.8872 = 6.5105 m2 

 

Wetted perimeter, 

 

1+sy2+b=P 2
 

 

1+1y2+y8284.0=P 2
 

 

288712887182840 .x.x.P +=  

 

P = 1.5632 +5.3372 

P= 6.9004m 

 



For 1m-length of the channel the cost of excavation and lining 

 

Cost of excavation = 6.5105 x 1 x 3x = Rs19.5315x 

Cost of lining  = 6.9004 x 1 x x   = Rs6.9001x 

 

Total cost of excavation and lining for one metre length  = Rs 26.4316 x 

But the cost per metre length of the unlined channel   = Rs27.818x 

Hence the lined canal will be preferable as against the unlined channel for 

construction  

Example: 5 

Design a rectangular channel in formed unfinished concrete for the give data:  

(i) Q = 5.75 m3/s (ii) Slope S = 1.2% (iii) Depth = ½ of the width of the channel (iv) n = 0.012 

 

Solution: The equation 
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In Eq (1) RHS is known  RHS = 0.012*5.75/(0.012)1/2 = 0.63 

Given y = b/2 

Express Area and the hydraulic radius in terms of ‘y’. 

A = by = 2y2 

P = b+ 2y = 4y 

Rh = A/P = y/2 

Therefore,LHS = AR2/3= 2y2* 
3

2

2
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Example: 6 

Find the diameter of a circular pipe which is laid at a slope of 1 in 7500 and carries a discharge of 1000 

litres/s when flowing half full. Given the value of Manning’s n = 0.018 

Solution: Slope of Pipe S0 = 
7500

1
 

Discharge = 1000 litres/s = 0.1m3/s 

Manning’s n = 0.018 

Let the diameter of pipe = D  

Depth of flow‘d’ = 
2
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Using Manning’s formula for velocity and writing equation for discharge  
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Example: 7 



Find the gradient necessary for a rectangular flume 1.5m wide and 0.75m deep to deliver 

3.5m3/s of water when running full. Take C = 72. 

Solution: 
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Example: 8 

A rectangular open channel has a bottom width of 2.4m and a surface roughness corresponding 

to Manning n = 0.015. If the slope of the bed is 0.001 and the depth of flow is 1.2m, what is 

the discharge under conditions of uniform steady flow? 

Solution: 

2m8822142byA ... ===  

m8421242y2bP ... =+=+=  

Hence, m60
84

882

P

A
R .

.

.
===  

sm324001060
0150

882
SR

n

A
Q 3

0
2

1
3

2
2

1
3

2

...
.

.
===  

3.  A channel of trapezoidal section, with side slopes at 60° to the horizontal base of the channel, 

conveys water at a depth of 0.9m. Find the width of the base and the gradient of the bed to 

discharge 1.7m3/s with a mean velocity of flow of 0.6m/s. Take Manning n = 0.025. 

Solution: 8332
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71

v

Q
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From Figure x9060 .tan =  

= 6090x tan. and thus  

( )  83322x2bb90A .. =++=  

m628260901483b908332xb .tan.... =−==+  

From the diagram, == 6090tt9060 sin..sin  

and thus m7064609026282t2bP .sin.. =+=+=  

y = 0.75m 

b = 1.5m 

y = 1.2m 

b = 2.4m 

x 
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y = 0.9m 60° 
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Example: 9 

A canal has a bottom width of 4m and sides with a slope of 1 vertical to 1.5 horizontal. The 

depth of water is 1.0m when the discharge is 4 m3/s. 

(a) Calculate the slope of the channel bed using the Manning formula withn = 0.022. 

(b) Calculate the discharge in m3/s when the depth of flow is 1.2m. 

Solution: 
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2.5Most Economical Open Channels - Rectangular, Triangular, Trapezoidal and Circular channels: The 

most efficient cross section may be defined as that which offers least resistance to flow and thus passes 

the maximum discharge for a given slope(So),  Area (A), and roughness  and Manning’s N (N) referring 

to  manning s formula   

x 

b 

y = 1.0m 1 

1.5 



eh SR
n

V 3/21
=  

Where, V = Mean Velocity of flow, 
P

A
Rh = = Hydraulic radius of the channel 

A = Area of flow    P – Wetted perimeter for the channel 

S =    Bed slope of the channel 

N =    Manning’s roughness coefficient. 

To obtain maximum discharge (Q), hydraulic radius (
P

A
Rh = ) should be maximum. For a given area 

‘A’ (A = Constant) the wetted perimeter (P) should be at least.  

 

2.5.1 CONCEPT OF MOST ECONOMICAL SECTION 

The Best hydraulic section: The conveyance ’K’ of a channel section increases with the increase in the 

hydraulic radius or with decrease in the wetted perimeter. The channel section having the least wetted 

perimeter for a given area has. The maximum conveyance, such a section is known as the best 

hydraulic section. 

The semicircle has the least perimeter among all sections with the same area hence it is the most 

hydraulically efficient of all sections. The geometric elements of six best hydraulic sections are listed in 

Table-2.3 but these sections may not always be practical owing to difficulties in construction and in use 

of material. 

Table – 2.3 Types of Geometric elements used in Open-channel Flow 

Sl. 

No 

Cross 

Section 

Area Wetted 

Perimeter 

Hydraulic 

Radius 

Top 

Width 

Hydraulic 

depth 

Section 

factor 

  A P R=A/P T D=A/T Z = A  D 

1 Semicircle (/2) y2 y (1/2)Y 2Y (/4)Y (/4)y 2.5 

2 Rectangle 

Half of a square 

2 y2 4Y 1/2Y 2Y Y 2y 2.5 

3 Triangle half Y2 2 2Y (1/4)  2 Y 2Y (1/2)Y (  2/2) Y 2.5 



Of a square 

 

4 

Trapezoid 

Half of a hexagon 

3 y2 2 3 Y (1/2)Y 4/3 3Y (3/4)Y (3/2)  Y 2.5 

5 Parabola (4/3) 2y2 8/30 2 Y (1/2)Y 2 2Y (2/3)Y (8/9) 3 Y 2.5 

 

Note-2: The Principle of the best hydraulic section applies only to the design of non-erodible channels. 

For erodible channels, the principle of active force must be used to determine an efficient section. 

A semi-circular cross section has the smallest wetted perimeter and therefore should have highest 

hydraulic efficiency. But since circular flumes with the exception of metal pipe or wood staves are rarely 

used, they are either impracticable (for earthen canals) or uneconomical (in concrete line 

canal).Though it may not always be possible to adhere to such across section (Semi-Circular) from a 

practical point of view, it should be always close to the theoretical requirements (i.e. ‘P’ must be 

minimum). Ina majority of cases, the choice falls on either rectangular or trapezoidal sections or 

requirement of a most efficient section for such shapes are derived below: 

 

2.5.2 Most economical Rectangular Channel:-  

Given: A=by, Where ‘b’ is the bottom width and ‘y’ is the depth of flow 

The condition is that wetted perimeter should be least  
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   Eq….2.7 
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A
P 2      Eq….2.8 

For wetted perimeter to be least, 0=
dy

dP
, Differentiating the above equation for‘P’, we obtain       

byyAor
y

A
===+− 2

2
202 :    

2

b
y =    Eq….2.9  

Thus for a given slope, Area and roughness, the most efficient hydraulic rectangular section will have 

a depth (y) of flow equal to one half the width (b) of the channel. 



2.4.3 Most economical Trapezoidal Section:-  

Given: 

A=by + sy2,  

Where ‘b’ is the bottom width and ‘y’ is the depth of flow and‘s’ is the side slope  

The condition is that wetted perimeter should be least  

  ( )212 sybP ++=      Eq….2.10 

   sy
y

A
b −=  

Therefore,  







++−= 212 sysy

y

A
P  

Since area ‘A’ and side slope‘s’ are constant, For wetted perimeter to be least, 0=
dy

dP
, Differentiating 

the above equation for ‘P’, we obtain the following,       

ss
y

A
orss

y

A
−+==++−− 2

2

2

2
12012  

Substituting the value of area A, 
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y

syby
−+=
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2

2

12      Eq….2.11 
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Giving the relationship between the bottom width of the channel and depth of water in the channel 

the hydraulic radius ‘Rh’
2

2

12 syb

syby

P

A
Rh

++

+
==   Eq….2.12 

Substituting the value of ‘b’ from above results in the following important relationship, 

2

y
Rh =  



In other words, for a trapezoidal section for a given channel and side slope, Area and roughness, to 

have maximum  hydraulic efficiency, the hydraulic radius ‘Rh’ should be one half the water depth (y). 

To determine the side slope (s) for this section the expression for wetted perimeter is expressed in 

terms of area ‘A’ (a constant) and a variable‘s’. The final expression for ‘P’ is given below: 

  ( ) 2/1
2122 ssAP −+=  

Is then differentiated with respect to side slope ‘s’ and equated to ‘zero’, which gives, 1
1

2

2
=

+ s

s
, 

squaring and solving for side slope ‘s’ 

=== 3030tan
3

3
ors  

Solving for bottom width of trapezoidal channel byP 332 == , 3,
3

2 2yAyb ==  

Thus for maximum hydraulic efficiency the trapezoidal section should be half hexagon so as to have 

the least wetted perimeter 

 

2.5.4 Most economical Triangular section:- 

For a triangular channel section, If  is the angle of inclination of each of the sloping sides with the 

vertical and y is the depth of flow. The following expression for the wetted area ‘A’ and wetter 

perimeter ‘P’ can be written 

A = y2tan      Eq….2.13 

tanAy =  

P = 2y sec      Eq….2.14 

Substituting the value of ‘y’ from equation we obtain,  

( )


sec
tan

2 A
A =      Eq….2.15 

Assuming the area ‘A’ to be constant Eq.13.1.9 can be differentiated with respect to  and equated to 

zero for obtaining the condition for minimum P  



Thus

( )
0

tan2

sec

tan

tansec
2

2

3

3

=













−=










A

d

dP
 

    Or  

           sec (2tan2 - sec2) = 0 

Since      sec  0 

  2 tan2 - sec2 =0 

   sectan2 =  

 = 450; or Z = 1 

Hence a triangular channel section will be most economical when each of its sloping sides makes an 

angle of 450 with the vertical. 

The hydraulic radius R of a triangular channel section can be expressed as 

  




sec2

tan2

y

y

P

A
R ==  

Substituting the value of  from equation in the above expression 

  
22

y
R =       Eq….2.16 

The most economical triangular section will be half square described on a diagonal and having equal 

sloping sides. It may however be noted that in all these cases the conditions for the discharge to be 

maximum would be the same, if instead of area of cross section (A) the perimeter (P) is given.    

 

 

2.5.5 Most economical Circular channel section:- 

For a circular channel section of any radius, as the depth of flow varies the shape of the flow area also 

varies due to convergence of the boundaries towards the top. As such both the wetted area A as well 

as wetted perimeter P varies with the depth of flow, and hence in the case of circular channels the 

condition of area of flow section being constant cannot be applied. Hence in case of circular channels 



two separate conditions may be derived for the maximum discharge and the maximum mean velocity 

of flow. 

Condition for maximum discharge through a circular channel section:- 

For a circular channel section of radius r if y is the depth of flow, the following expressions for the 

wetted area A and the wetted perimeter P can be written  

                    A = ( ) sin
2

2

−
r

     Eq….2.17 

                    P =  r       Eq….2.18 

Where ‘’ is the angle subtended at the center by the portion of circular arc in contact with water. 

In accordance with Chezy’s formula, discharge ‘Q’ passing through the channel may be expressed 

as 

S
P

A
CS

P

A
CARSACQ

3

=













==     Eq….2.19 

For maximum discharge the depth of flow in the channel is  

                      y= 1.8988r = 0.95 D 

Where D is the diameter of the channel. Further hydraulic radius for a circular section is  

                     R = 0.5733r = 0.29 D 

That is for maximum discharge in a circular the hydraulic radius is equal to 0.29 times the diameter of 

the channel. 

Condition for maximum discharge through a circular channel section:- 

 

The depth of flow in the channel, for maximum velocity is 

                     y= 1.626r =0.81D    

Further hydraulic radius for a circular section is  

                     R = 0.6086r = 0.30 D 

That is for maximum mean velocity in a circular the hydraulic radius is equal to 0.30 times the diameter 

of the channel.  



 

2.6 Problems on Economical Open Channels 

 

Solved Example  

 

Example-1  

Find the depth of flow in the most efficient rectangular section carrying a discharge of            0.25m3/sec 

on a slope of in 2500, Given Manning’s. Constant   n= 0.015. 

Solution: Using manning formula the discharge ’Q’ can be given by 

0
3/21

SR
n

byQ h=  

Substituting for most efficient rectangular section in the above equation 

b = 2y, Rh = y/2 

( ) 25.0
2500

1

2

1

015.0

1
2

2

1
2

3

2
3

83/2

=
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


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
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
=








= hS

h

n
yyQ e  

Solving for ‘h’  h = 0.84m, B = 1.682m 

Example-2         

A rectangular channel carries water at the rate of 5.0 m3/s when the slope of the channel is 0.25 % 

find the most economical dimensions of the channel if the manning’s n =0.020  

 

Solution:  Given Q = 5.0 m3/s, S0 = 
100

25.0
;  n = 0.02 

 

For best economical rectangular channel 

 A = By (i) 

          P = B+2y (ii) 

Condition for most economic channel is B=2y and R= 
2

y
 

T=B 

y 

T=B 

y 



( ) 0.5
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25.0

2

1

02.0

1
2

2

1
2

3

2
3
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On solving    h = 2.122 m B= 2  h = 4.244 m. 

Example-3 

A triangular channel section of 20m2 area, what is the apex angle and depth for the condition of 

maximum discharge. 

Solution: when the channel carries the maximum discharge it will be most economical or best 

hydraulic section. For such a channel 
22

y
Rh =  and side slopes are = 450 with the vertical 

Area ‘A’ is given by ( ) 222 45tantantan2
2

1
yyyyyA ====   

Or mAy 47.420 ===  

 

 

 

Example-4 

Determine the bed width and discharge of the most economical trapezoidal channel with side slopes 

of 1V:2H and bed slope of 1m per km and depth of flow equal to 1.25m. Roughness coefficient of 

channel=0.024. 

Solution:  

Given: side slope s = 2, Bed slope S0 =
1000

1
, y = 1.25m, n = 0.024 

The condition for most economical trapezoidal channel  

 

( ) ( ) 22222 863.3221225.112 mssyA =−+=−+=  

 



But the bed width is given by mys
y

A
B 59.025.12

25.1

863.3
=
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




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
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The best hydraulic radius  m
y

Rh 625.0
2

25.1

2
===  

 

The maximum discharge for a given depth and side slope for a trapezoidal channel is given by 

( ) ( ) ( ) smSR
n

AQ h /71.3
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1
625.0
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1
863.3

1 3

2/1

3/22/1

0

3/2

max =







==  

    

 

 

 

 

 

 

 

 

 

 

    

UNIT-3: NON-UNIFORM FLOW IN OPEN CHANNELS 

3.1 Introduction 

3.2 Specific energy, Specific energy diagram 

3.3 Critical depth, Conditions for Critical flow- Theory & problems.  

3.4 Hydraulic jump in a Horizontal Rectangular Channel (Theory and problems) 

3.5 Dynamic equation for Non-Uniform flow in an Open channel 



3.6 Classification of Surface profiles 

 

 

3.1 Introduction:   Uniform Flow:  

Uniform open channel flow has constant properties along the open channel, such as depth (y) and 

velocity (V).  Also, the head loss equals the change in elevation. The energy grade line Sf, water surface 

slope Sw and channel bed slope S0 are all Parallel, i.e. Sf = Sw = So. 

The normal depth (yn) is defined as the depth of flow at which a given discharge flows as uniform flow 

(yn) in a given channel. 

 

Fig 3.1 Development of Uniform Flow in a long Channel 

 

Computation of Normal Depth and Velocity Determination:  

e
/

h SR
n

V 321
=      Eq…3.1 
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h SKSR
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321

    Eq…3.2 

‘K’ is known as ‘Conveyance of the Channel’. 

Gradually and Rapidly Varied Flow: 

If flow is gradually varied, the depth h and other flow factors vary smoothly from section to another.  

In rapidly varied flow, depth h and other flow factors change abruptly over a very short distance.  

Discontinuity of flow is also possible.  Rapidly varied flow can be seen e.g. at a weir, at a change in 

channel width, at a hydraulic jump or in a hydraulic drop.    

3.2 Specific energy, Specific energy diagram 

The specific energy in a channel section is defined as the energy per unit weight of water measured 

with respect to channel bottom.The specific energy E in a channel section or energy head measured 

with respect to the bottom of the channel at the section is E = y + 
g

V

2

2

    

     Eq…3.3 

Where ‘’ is a coefficient that takes into account the actual velocity distribution in the Particular 

channel section, whose average velocity is ‘V’. The coefficient ‘’ can vary from a minimum of 1.05 -

for a very uniform distribution- to 1.20 for a highly uneven distribution. Nevertheless in a preliminary 

approach it can be used  = 1, Eq.1 becomes,    E = y + 
g

V

2

2

 

A channel section with a water area A and a discharge Q, will have a specificEnergy  

 E = y +  
2

2

2gA

Q

     Eq…..3.4

 

Above equation shows that given a discharge Q, the specific energy at a given section, is a function of 

the depth of the flow only. When the depth of flow y is plotted, for a certain discharge Q, against the 

specific energy E, a specific energy curve, with two limiting boundaries, like the one represented in 

figure is obtained. The lower limit, AC, is asymptotic to the horizontal axis and the upper, AB, to the 

line E=y. The vertex point A on the specific energy curve represents the depth y at which the discharge 

Q can be delivered through the section at a minimum energy. For every point over the axis E, greater 

than A, there are two possible water depths. At the smaller depth the discharge is delivered at a higher 

velocity ñ and hence at a higher specific energy of flow known as super-critical flow. At the larger depth 



the discharge is delivered at a smaller velocity but also with a higher specific energy, a flow known as 

sub critical flow. In the critical state the specific energy is a minimum, and its value can therefore be 

computed by equating the first derivative of the specific energy (equation 3.4) with respect to is 

zero.  

01
3

2

=+−=
dy

dA

gA

Q

dy

dE

    Eq.3.5

 

The differential water area near the free surface, dA/dy = T, where T is the top width of the channel 

section. 

By definition D = 
T

A
 

The parameter D is known as the ‘hydraulic depth’ of the section, and it plays a big role in the studying 

the flow of water in a channel. Substituting in equation (3.5) 
dy

dA
 =

T

A
 replaced by D:   

rF
gD

V
== 1

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Fig. Specific Energy Diagram 



 

 

The quantity 
rF

gD

V
==1  is dimensionless and known as the Froude’s number 

3.2.1 Flow over a raised hump - Application of the Bernoulli equation: 

Steady uniform flow is interrupted by a raised bed level as shown Fig.3.2. If the upstream depth and 

discharge are known we can use equation 3.4 and the continuity equation to give the velocity and 

depth of flow over the raised hump. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 of the uniform flow interrupted by a raised Hump 

Apply the Bernoulli equation between sections 1 and 2. (Assume a horizontal rectangular channel z1 

= z2 and take α = 1) 

 

 

 

 



 

Equation 3.6 

Use the continuity equation 

 

 

 

Where ‘q’ is the flow per unit width. 

Substitute this into the Bernoulli equation to give: 

 

 

 

Rearranging: 

 

Thus we have a cubic with the only unknown being the downstream depth, y2. There are three solutions 

to this - only one is correct for this situation. We must find out more about the flow before we can 

decide which it is. 

Solved Example of the raised bed Hump: 

A rectangular channel with a flat bed and width 5m and maximum depth 2m has a discharge of 10m3 

/s. The normal depth is 1.25 m. What is the depth of flow in a section in which the bed rises 0.2m over 

a distance 1m? Assume frictional losses are negligible. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Again this can be solved by a trial and error method: 

 

 

 

 

 

 

 

 

i.e. the depth of the raised section is 0.96m or the water level (stage) is 1.16m a drop of 9cm when the bed 

has raised 20cm. 

3.2.2 Critical, Sub-critical and super critical flow: 

The specific energy change with depth was plotted above for a constant discharge Q, it is also possible to plot 

a graph with the specific energy fixed and see how Q changes with depth. These two forms are plotted side by 

side below 

 

 

 

 

 

 

 

 

 



 

 

Figure 3.3 of variation of Specific Energy and Discharge with depth. 

From these graphs (Fig.3.3) we can identify several important features of rapidly varied flow. 

For a fixed discharge: 

1. The specific energy is a minimum, Esc , at depth yc , This depth is known as critical depth.  

2. For all other values of E s there are two possible depths. These are called alternate depths. For 

 subcritical flow  y >yc 

Supercritical flow  y <yc 

For a fixed Specific energy 

1. The discharge is a maximum at critical depth, yc 

2. For all other discharges there are two possible depths of flow for a particular Es 

i.e. There is a sub-critical depth and a super-critical depth with the same Es 

An equation for critical depth can be obtained by setting the differential of E to zero: 

 

 

 

 

 

 

 

 

 

 

Equation 3.7 

 



For a rectangular channel Q = qb, B = b and A = by , and taking a = 1 this equation becomes 

 

 

Equation 3.8 

 

Substituting this in to the specific energy equation 

 

 

 

   Equation 3.9 

 

3.2.3 The Froude number: 

The Froude number (Fr) is defined for channels asthe ratio of Inertia force to gravity force: 

Equation 3.10 

Its physical significance is the ratio of inertial forces to gravitational forces squared 

 

 

 

It can also be interpreted as the ratio of water velocity to wave velocity 

 

 

 

This is an extremely useful non-dimensional number in open-channel hydraulics. Its value determines 

the regime of flow – sub, super or critical, and the direction in which disturbances travel 

• Fr< 1 sub-critical water velocity > wave velocity upstream levels affected by downstream 



controls 

• Fr = 1 critical 

 

• Fr> 1 super-critical water velocity < wave velocity upstream levels not affected by 

downstream controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Sub-critical and super critical flow and transmission of disturbances 

 

 

 

 

 

 

 



 

 

 

Solved Examples:  

Q1.A triangular gutter whose sides include an angle of 600 conveys water at a uniform depth of 300 

mm.  If the bed gradient is 1 in 150 find the discharge.  Take Chezy’s constant C= 55 m 1/2/s. 

 

Ans: AB =CB=AC 

               =0.30 Sec 300 

      =0.3464m  

 

Area of cross section of flow area 

 A = 
2

1
(0.3464) 0.30 

          =0.05196 m2. 

Wettedperimeter 

      P= 2 x 0.3464 m = 0.6928 m 

Hydraulic mean depth m075.0=
6928.0

05196.0
=

P

A
=Rh

 

 

Discharge 0hSRAC=Q  

  s/m
150

075.0
55x05196.0= 3

 

  Q =0.0639m3/s=63.90 liters/sec 

 

Q2. A trapezoidal section has side slopes of 1 vertical to 1 horizontal and has to convey a discharge of 14m3/s.  

The bed slope of the channel is 1 in 1000.  Chezy’s constant is 45 if the channel is unlined and is 70 if the channel 

300m

m 

30 

B 

C A 



is lined with concrete.  The cost per metre length of providing the channel and state which arrangement is 

economical.  Take cost per square metre of lining = x. 

Ans: Given s = 1, S0= 
1000

1

 
 

For the trapezoidal channel of best section following criteria has to be satisfied 

 

  1+sy=
2

sy2+b
2  

  1+1y=
2

xy1x2+b
2  

 b+2d=2 2 y, b = (2 2 -2) y 

  b=0.8284y 

A = d (b + s y) =y (0.8284y+1y) 

A = 1.8284y2 

Let the cost per square metre for the lined channel = x 

Cost per cum of excavation = 3x 

Case (i) Unlined channel: Cost of Unlined channel 

Discharge   0hSRAC=Q =14 (given discharge) 

 

 

1.8284 y2 x 45 14=
1000

1

2

y
 

 

=y 2/5 4582841

200014

x.  

 

y = 2.252m 

 



A=1.8284 y2 = 1.8284 x 2.2522 = 9.9727 m2. 

 

Cost of excavation for 1 metre length 

 

= 9.2727 x 1 x 3x 

= 27.8181 x 

 

Case (ii) Unlined channel: Cost of lined channel 

 

Discharge 0hSRAC=Q =14 

 

7082841 2
xd. 14=

1000

1

2

d
 

 

=25 /
d 7082841

200014

x.  d = 1.887 m 

 

A= 1.8284 d2 = 1.8284 x 1.8872 = 6.5105 m2 

 

Wetted perimeter, 

 

1+sy2+b=P 2
 

 

1+1y2+y8284.0=P 2
 

 

288712887182840 .x.x.P +=  

 

P = 1.5632 +5.3372 

P= 6.9004m 

 



For 1m-length of the channel the cost of excavation and lining 

 

Cost of excavation = 6.5105 x 1 x 3x   =19.5315x 

Cost of lining  = 6.9004 x 1 x x   = 6.9001x 

 

Total cost per metre length of lined canal   = 26.4316 x 

But the cost per metre length of the unlined channel   = 27.818x 

 

Hence the lined channel is more economical. 

 

Q.3Find the normal depth in a wide rectangular channel for the given data: 

Gives: n = 0.015, S0    = 0.001, Q = 2.5 m3/s, B =10m 

 

 

 

2/1
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3/21
SAR

n
Q n= ,      

For a wide channel:  Rh = yn; Se = S0 =0.001 

( ) 2/13/2
001.010

015.0

1
5.2 nn yy=  

( ) 10

1

001.0

015.05.2
2/1

3/5
x

x
yn =  

  yn = 0.278m 

Q4. A discharge of 16.0 m3/s flows with a depth of 2.0 m in a rectangular channel 4.0 m wide.  At a downstream 

section the width is reduced to 3.5 m and the channel bed is raised by (a)  Z = 0.20 m and (b)  Z = 0.35 m. 

 

 

B 

yn 

 



Ans: Let the suffixes 1 and 2 refer to the upstream and downstream sections respectively. 

 

At the upstream section,  s/m0.2=
2x4

16
=v1  

 

F1 = Froude number 452.0=
20x81.9

0.2
=

1gy

v
=

1
 

 

The upstream flow is sub-critical and the transition will cause a drop in the water surface elevation. 

 

m204.0=
g2

v 2

1
 

 

The upstream-specific energy E1= y1 +
g2

v 2

1
 = 2.0 +0.204 =2.204m 

q2 = discharge intensity at the downstream section m/s/m571.4=
5.3

0.16
=

B

Q
= 3

2

 

 

'yc2’= critical depth corresponding to ‘q2’ 

 

m87.1=
81.9

)571.4(
=

g

q
=y 3

2

3

2

2c  

m930.1=y
2

3
=E 2c2c  

(a) When  Z = 0.20 m 
E2 = available specific energy at section- 2 

= E1 -  Z = 2.204 -0.20 = 2.004 m Ec2 

Hence the depth y2 yc2 and the upstream depth will remain unchanged at y1. 

1

2

2

2 E=ZΔ+
g2

V
+y  



20.0204.2+
y81.9x2

)571.4(
+y 2

2

2

2 -  

004.2=
y

065.1
+y 2

2

2  

Solving by trial and error, y2= 1.575 m. 

 

Hence when  Z = 0.20 m, y1 = 200 m and y2 = 1.575 m 

 

(b) When  Z = 0.35 m. 
 

E2 = available specific energy at section-2 

     = 2.204 – 0.350 = 1.854 m Ec2 

Hence the contraction will be working under choked conditions.  The upstream depth must rise to create a 

higher total head.  The depth of flow at section 2 will be critical with y2 = yc2 = 1.287 m. 

 

If the new upstream depth is y’1 

 

350.0+930.1=ZΔ+E=
ygB2

Q
+y 2c2'

1

2

1

2

'

1
 

 

28.2=
y)0.4(x81.9x2

)16(
+y 2'

1

2

2

'

1  

 

i.e. 280.2=
y

8155.0
+y 2'

1

'

1  

By trial- and -error,     y’1 = 2.94m. 

The upstream depth will therefore rise by 0.094 m due to the choked condition at the constriction.  

Hence, When  Z = 0.35 m.y’1 = 2.094m and y2= yc2=1.287 m. 

 

Q5. A triangular channel with an apex angle of 750 carries a flow of 1.2m3/s at a depth of 0.80 m.  If the bed 

slope is 0.009, find the roughness coefficient of the channel. 



Ans: y0 = normal depth = 0.80m 

Area   
2

75
tan8.0x2x80.0x

2

1
=A = 0.491m2 

 

Wetted perimeter P=2×0.8× sec 37.50 = 2.0168m 

 

   Rh = A/P = 0.243 m. 

20.1

)009.0(X)243.0(x)491.0(
=

Q

SAR
=n

2/13/22/1

0

3/2

h
=0.0151. 

 

 

3.3 Critical depth, Conditions for Critical flow- Theory & problems.  

 

Critical depth (yc): It is defined as a depth of flow at which specific energy is minimum.The critical flow has been 

defined as that flow at which the specific energy is the minimum for a given discharge, utilizing this definition; 

a general criterion may be arrived at as follows: 

  
( )
( ) )q,y(f=

gy2

q
+y=

y.bg2

b.q
+y=E 2

2

2

2

   Eq.(3.11) 

For minimum specific energy, differentiating the above expression for ‘E’ with respect to ‘y’ and equating 

0=
dy

dE
 

dy

dA
x

A

2
x

g2

Q
-1=

dy

dE
3

2

 

 

If ‘T’ = top width of the channel, then d A = T. dy and T=
dY

dA
, and using the condition of minimum specific 

energy i.e. 0=
dy

dE
, yields, 



0=
A

T
x

g

Q
-1=

dy

dE
3
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T

A

g

Q
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A

T
x

g

Q 32

3

2

==     

represents the criterion for critical flow in the channel. The equation may be re-arranged to yield other 

important relationships, 

  D=
g

v
or

T

A
=

gA

Q 2

2

2

 

 

  
2

D
=

g2

v2

      Eq.(3.12) 

the above equation states that in critical flow, the ‘velocity head ‘
g2

V2

’is equal to half the hydraulic depth ‘
2

D
’ 

From which, 
rF=1=

gD

v
      Eq.(3.13)   

The above equation shows that for critical flow the Froude’s number is unity. 

9.1.1 Critical flow in a Rectangular channel 

The below equation may be used to obtain critical depth in any channel. In case of a rectangular channel of 

width ‘b’, carrying a discharge ‘Q’ under critical conditions we obtain,    Q = q. b, A = b y, T = b 
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Substituting for ‘Q’, ‘A’ and ‘T’ for a rectangular channel, 
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The above equation relates the critical depth ‘yc’ and the discharge per unit width ‘q’ and shows that the critical 

depth is independent of the channel slope. 

From Eq.16 the critical velocity c

c

c y=
b

y.b
=

T

A
=Dwhere,gD=v  

We know that for a given discharge flowing at the critical depth, the specific energy is the minimum, thus 

c

c
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cmin y
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+y=

g2

V
+y=EEnergySpecific  

The critical slope is the channel slope at which uniform critical flow is obtained in the channel, and is evaluated 

either using the Manning’s or the Chezy’s formula. It is noted that in uniform flow the slope of the energy line, 

the water surface slope and the slope of the channel bottom are equal (Se=Sw=S0). Using Manning’s equation, 

we obtain, 
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c

3/2

cc SR
n

1
=v  

Where, Rc = Hydraulic radius at the critical depth, Sc – Critical slope  

In case the Chezy’s formula is used, then, 

 

ccc SRC=v  

In which C = Chezy’s constant. 

 

Q.6:  Find ycfor a rectangular channel for the given data, 

Q= 1 m
3
/s, b = 2 m.,  

Solution:The discharge per unit width ‘q’ 

q = 
2

1
 = 0.5 m

2
/s 

 

At critical condition, Fr = 1 
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yc = ym = y (for a rectangular channel) and using continuity equation we have,  

y

q

bxy

Q

A

Q
V ===  

Given:  Q = 1 m
3
/s, b = 2 m., q = 1/2 = 0.5 m

2
/s 

yc = (0.5/9.81
1/2

)
2/3

= 0.294 m 

yc = 0.294 m 

 

3.4 Hydraulic jump in a Horizontal Rectangular Channel: 

Analogous to a normal shock in compressible flow, a hydraulic jump provides a mechanism by which an 

incompressible flow, once having accelerated to the supercritical regime, can return to sub critical flow. This is 

illustrated by the following figure. (Fig. 3.5 and Fig. 3.6)  

 

Fig. 3.5 Hydraulic jump 

 



The critical depth is an important parameter in open-channel flow and is used to determine the local flow 

regime. 
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Fig.3.6 Control volume for hydraulic jump 

 

Specific Force: 

In case of a horizontal channel,  = 0 and hence the weight component W Sin, vanishes from the momentum 

equation, if, the length L involved between the sections is small, the resistance force Rf may be ignored and then 

becomes 

( ) 2112 PPVV
g

Q
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
     Eq…3.15 

The hydrostatic forces P1 and P2 may be evaluated and P1=Z1A1 and P2 = Z2A2where Z1 and Z2 are the distance 

of centroids of flow areas, A1 and A2from their respective water surfaces. From the continuity equation, 

Q = V1A1 = V2A2 

Substituting for V1 and V2 in the momentum equation, one gets. 
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     Eq…3.17 

 

The first term of the above equation 
gA

Q2

is the momentum of flow passing the channel section per unit time 

per specific weight ‘’ of the liquid.    

 

The second term (A Z) is the hydrostatic force per specific weight of the liquid. Both the terms being basically 

the forces per specific weight, their sum denoted by ‘F’ is generally known as the specific force. 

 

For a rectangular channel with varying width ‘b’ having depth y1, y2 and velocity V1, V2 the expression for 

continuity equation becomes  

Q = V1by1 = V2by2 introducing the discharge per unit width 
b

Q
q =  in Eq.3.17 
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On simplification 
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The above equation relates the conjugate depth (or sequent depth) depths y1 and y2 with the discharge per unit 

width ‘q’ for a given discharge ‘Q’. For a rectangular channel the quadratic equation in y2. 
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(i) For Fr1<1, 
1

2

y

y
<1. This condition for a falling liquid surface (hydraulic Drop) in sub-critical flow  

(ii) For Fr1=1, 
1

2

y

y
=1. This condition is critical  

(iii) For Fr1>1, 
1

2

y

y
>1. This condition is hydraulic jump  

 

3.4.1 Theoretical jump relations: 

By means of a one-dimensional control-volume analysis, one can obtain analytical expressions for the 

downstream velocity, depth, and specific energy in terms of the upstream velocity, depth, and specific energy, 

as follows. Consider the fixed control volume shown in Fig.3.6 With the approximation of steady flow in the 

control volume, the conservation-of-mass equation for flow before and after the hydraulic jump can be written 

as  

2211 VbyVby =   Eq…3.19 

 

and the momentum-balance equation for steady flow through the control volume requires that the sum of the 

forces on the fluid be equal to the rate of change in momentum of the fluid. The horizontal component of this 

vector equation can be simplified to  
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In order to express the downstream parameters in terms of the inlet parameters to the hydraulic jump, one can 

simplify and introduce the upstream Froude number, 
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1
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It can then be shown that 
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Which is a quadratic equation for the dimensionless depth ratio 
1

2

y

y
in terms of the upstream Froude number 

Fr1. This quadratic equation has two solutions for the depth ratio 
1

2

y

y
, but one of these roots is negative and 

has no physical meaning, while the other is, 

2

181 2
1

1

2
−+

=
rF

y

y
     Eq…3.20 

The theoretical relationship between the depth ratio 
1

2

y

y
and the upstream Froude number Fr1 given in Eq. 3.20 

is that of a hyperbola, as illustrated in Fig. 3.22. Mechanical energy is dissipated in the jump, and therefore a 

simple equation for 

Conservation of energy is not valid. By definition, the head loss hLis given by the difference in mechanical energy 

E before and after the jump: 
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This expression for head loss can be made dimensionless by considering the ratio  
1y

hL , which can be simplified 

by using the equations for conservation of ass and momentum balance, to one that is dependent solely on 

depth ratio (y2/y1),  

 



Fig.3.22 Effect of Depth Ratio and Froude No. on Hydraulic jump 

 

and thus on the upstream Froude number: 
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A theoretical plot of 
1y

hL  versus Fr1 is also given in Fig. 3. In addition, the downstream Froude number Fr2 given 

by, 
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is also plotted on the same figure. Note that, if a jump is formed, then the downstream flow is always sub-

critical (that is, Fr2<1), while the upstream flow is always supercritical (that is, Fr1>1). 

 

3.4.2 Energy dissipation: 

The energy-dissipating effectiveness of a hydraulic jump can be classified in terms of the upstream Froude 

number as follows (Round and Garg 1986): 

 

312
1 toFrFor = : Standing wave. There is only a slight difference in conjugate depths y1 and y2. Near 

2
1rF = 3 a series of small rollers develops. 



 

Fig.3.7Undular Hydraulic Jump 

632
1 toFrFor = : Pre-jump condition. The water surface is quite smooth, the velocity is reasonably 

uniform, and the energy loss is low. No baffles are required if the proper length of pool is specified. 

:toFrFor 2062
1 = Transition region. An oscillating action of the jump exists. Each oscillation of the 

jump produces a large wave of irregular period that can travel downstream for miles and damage earth banks 

and rip-rap. It is recommended to avoid this range of Froude numbers in the design of stilling basins. 

:toFrFor 80202
1 =  The best range for dissipating energy effectively. The jump is well balanced and 

the action is at its best. Energy losses range from 45% to 70%. Baffles and sills may be utilized to reduce the 

length of the basin.  

:aboveFrFor 802
1  Effective but rough at dissipating energy. Energy losses range from 70% to 85%. 

Other types of stilling basins may be more economical. 

 

3.4.3 Types of Hydraulic Jump:  

• For jumps in which the ratio 








1

2

y

y
 is not greater than 2.0 the liquid surface does not rise abruptly 

and has a number of undulations of gradually diminishing size. Such a jump is called as an undular 

jump.  

• For 02
1

2 .
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y
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


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
, the upstream Froude number Fr1 = 3. This fixes the upper limit of Fr1 for undular 

jumps. For higher values 2
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


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

y

y
 and consequently Fr1 3, the liquid surface rises fairly abruptly, 

and the hydraulic jump then is known as a direct jump. 



 

The United States Bureau of Reclamation has classified the jump into the following five categories, 

depending upon the magnitude of the Froude number of the approaching flow Fr1 

(i) Undular jump: The upstream Froude number Fr1 ranges from 1 to 1.7 and the liquid surface shows 

undulations of gradually decreasing size. 

(ii) Weak jump: The upstream Froude number Fr1 ranges from 1.7 to 2.5, number of small rollers 

appear on the surface of the jump, and the downstream liquid surface remains smooth. The energy 

loss in the jump is low. 

(iii) Oscillating jump: For upstream Froude number Fr1 ranging between 2.5 between to 4.5 there is an 

oscillating jet which enters the jump bottom and oscillates to the surface. Each oscillation produces 

large wave of irregular period and does extensive damage to the canal bed banks while traveling 

miles downstream. 

(iv) Steady jump: This type of jump occurs in the upstream Froude number Fr1 range of 4.5 to 9.0. The 

fluctuations in the tail water depth have a very little effect on the position and the action of the 

jump. The energy dissipation may be in the range of 45% to 70% 

(v) Strong jump: For Froude number greater than 9.0, the surface downstream of the jump is rough 

and the energy dissipation may be up to 85%.Figure (12.39) illustrates the types of jump described 

above. 

 

3.4.4 Elements and Characteristics of a Hydraulic Jump: 

The following quantities are generally known as the elements of the hydraulic -jump: 

(i) pre-jump depth y1 

(ii) post jump depth y2 

(iii) height of the jump, Hj=  y2 - y1 

(iv) length of the jump, Lj= 5Hjapprox, and 

(v) specific energies before and after the jump(i.e. E1 and  E2 ), and 

(vi)  The Loss of energy (E), in the jump. 

   

With the exception of the jump length Ljall the remaining elements can be determined theoretically with the 

aid of equations derived earlier. It can be noted that these elements are functions of the depths y1 and y2. It, 

therefore, appears that the conjugate depths constitute the most important elements of the jump. As regards 

the length of the jump, it has been observed from experimental data that there is a wide variation in the 



relationship between length and height of jump. It is because of the fact that the downstream end of the jump 

cannot be precisely demarcated on account of wavy surface which follows a jump. The length of the jump in 

rectangular channels may be usually of the order of five times its height. The following dimensionless quantities 

are generally known as the characteristics of the jump: 

(i) Relative loss 
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

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1E

E
 is defined as the ratio energy loss and the specific energy       before the jump. 

The relative loss, being a ration of energies, is dimensionless, 

 

 

Eq…3.24 

 

(ii) Efficiency of the Jump
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E
: The ratio of the specific energies after and before the jump is known 

as the efficiency of the jump. The efficiency may be expressed in terms of the Froude number Fr1, thus 
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Eq…3.25 

(i) Relative height of the jump is given by 
1E

H j
. The height of the jump is defined as difference between 

the depths after and before the jump, thus 
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(iv) The loss of energy ‘ΔE’ in the normal hydraulic jump is equal to the difference  

in specific energies before ( E1 ) and after ( E2 ) the jump and can be shown  

to be equal to 
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Eq…3.27 

The power lost in the jump Plost is given by, 
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Q6. A spillway discharge a flood flow at a rate of 7.75m3/s per meter width.  At the downstream 

horizontal apron the depth of flow was found to be 0.50 m.  What tail water depth is needed to form 

a hydraulic jump?  If a jump is formed, find its (a) type, (b) length (c) head loss, and (d) energy loss as 

a percentage of the initial energy. 

 

Ans: q=7.75 m3/s/ m, and y1 = 0.50 m 

 

s/m50.15=
50.0

75.7
=v1  

 

0.7=
50.0x81.9

50.15
=F1
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y2 = 4.71m = required tail water depth. 

 

(a) Type: Since F1 = 7.0, a ‘steady’ jump will be formed 

(b) Since F1  5.0 l Lj  = 6.1 y2 
 

Lj = length of the jump = 6.1 x 4.71 = 28.7 m 

 

(c) EL= head loss = m92.7=
50.07.44
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Q7. A rectangular channel carrying a supercritical stream is to be provided with a hydraulic-jump type 

of energy dissipater.  If it is desired to have an energy loss of 5.0 m in the jump when the Intel Froude 

number is 8.5 determine the sequent depths. 

 

Ans: Given F1 = 8.5, and EL = 5.0m 
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y1=0.98 m and y2 = 2.277m. 

 

Q.8 A sluice gate in a 3.0 m wide rectangular, horizontal channel releases a discharge of 18.0m3/s.  The 

gate opening is 0.67 m and the coefficient of contraction can be assumed to be 0.6 Examine the type 

of hydraulic jump formed when the tail water is (i) 3.60 m (ii) 5.00 m and (iii) 4.09m. 

 

Ans: Let A be the section of vena contract 

 

Ya = Depth at vena contracta = 0.67 x 0.6 = 0.40m 

Va = 18.0/(3.0 x 0.4) = 15.0 m/s. 



Fa = Froude number at vena contracta 
agy

V
=  

573.7=
4.0x81.9

0.15
=Fa  

If y2 = Sequent depth required for a jump at vena contract  
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y2 = 10.22 x 10.40 = 4.09 m. 

 

(i) When the tail water depth yt = 3.60m, 
 

Since yty2, a free, repelled jump will form. 

 

s/m667.1=
60.3x0.3
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=Vt  

 

281.0=
60.3x81.9

667.1
=Ft  

The depth at the toe of this repelled jump y1 is given by  
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y1 = 0.50 m. 



 

An M3 curve will extend from section A (ya=0.40 m) to section 1 (y1=0.50m). 

 

(ii) When the tail water depth yt = 5.0 m.Since, yty2, a submerged jump will occur. 
 

(iii) When yt= 4.09, yt= y2 and a free jump will occur at section I with y1 = ya = 0.40m. 
 

Q9. A rectangular horizontal channel of 3.0 m wide carries a discharge of 10m3/s.  Determine whether 

hydraulic jump may occur at an initial depth of 0.50 m or not.  If jump occurs determine the sequent 

depth and height, length of the jump? 

Ans: The hydraulic jump will form if the critical depth of the channel I more than the initial 

depth (y1) for the given discharge.  

 

Given Q = 10 m3/s, B = 3.0m, y1 = 0.5m 
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Since the critical depth yc> y1, Hence the hydraulic jump will form.  

The initial Froude number  03
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The post depth y2 is determined by using the following relationship, 
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Height of the jump = 1.9 – 0.5 = 1.4m 

Length of the jump = 5 x 1.4 = 7.0 m 

 



3.5 Dynamic equation for Non-Uniform flow in an Open channel: the steady flow whose depth varies 

gradually along the length of the channel.  

 

Figure 3.8 Gradually varied flow 

The flow in an open channel may be either uniform or non-uniform (also known as varied flow). In 

uniform flow, the depth of flow remains constant along the length of the channel. This type of flow is 

possible in prismatic channels of sufficient length. The uniform flow is characterized by parallelism of 

channel bottom, liquid surface and the energy line. The non-uniform or varied flow is one in which the 

flow depth changes in the flow direction. The flow is said to be gradually varied when the depth 

changes gradually over a long distance, whereas in rapidly varied flow, the change in depth takes place 

in a short distance. The change in depth may sometimes be quite abrupt, as in case of a hydraulic jump. 

Since this type of non-uniformity is limited to a short distance, a hydraulic jump and a hydraulic drop 

thus represent local phenomena. The rapidly varied flow is, therefore, a local phenomenon. 

 

The flow in an open-channel is termed as gradually varied flow (GVF) when the depth of flow varies 

gradually with longitudinal distance. Such flows are encountered both on upstream and downstream 

sides of control sections. Analysis and computation of gradually varied flow profiles in open-channels 

are important from the point of view of safe and optimal design and operation of any hydraulic 

structure. 

 

Gradually varied flow may be caused as a result of one or more of the following factors: 

• Change in the shape and size of the channel cross-section 

• Change in the channel slope. 

• Presence of obstruction, such as a weir , and 



• Change in the frictional forces at the boundaries. 

 

3.5.1 Equation of Gradually Varied Flow: 

In open channel flow computations, we are often called upon to predict depth of flow at a certain 

location or to estimate the distance over which backwater effects due to construction of a weir or a 

spillway would be transmitted upstream. If the depth of flow in a channel is known for a given 

discharge, the area and the mean velocity of flow can be determined. The position of liquid surface in 

relation to the channel bottom determines the depth of flow, which in turn is used to define the type 

of flow. 

The following assumptions are necessary for analyzing the gradually varied flow: 

a) That the flow is steady. 

b) That the pressure distribution over the channel section is  hydrostatic, i.e.,  

c) streamlines are practically straight and parallel,  

d) That the head loss is same ass for uniform flow 

e) That the channel slope is small, so that the depth measured vertically is the same as  depth 

measured normal to the channel bottom, 

f) That the channel is prismatic. 

g) That the kinetic energy correction factor is very close to unity and 

h) That the channel roughness does not depend upon the depth of flow, and is constant along 

the channel length. 

Let Z, y and V2/2g be the datum head, the depth of flow and the velocity head respectively at any 

section. Then according to the Bernoulli’s equation, the total energy of flow per unit weight of liquid 

above the horizontal datum is  
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Figure 3.9 Gradually Varied flow  

Taking the bottom of the channel as the x- axis and the vertically upwards direction measured from 

the channel bottom, as the y-axis differentiation of the below equation with respect to x yields. 
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    Eq…3.29 

Let, Se  = slope of the energy line, and  

 S0  = slope of the channel bottom. 

Now as the total energy H and the datum head Z both decrease in the direction of flow, the differential 

terms ‘dH /dx’ and dZ/dx representing the energy line slope and the slope of the channel bottom both 

are negative from which the slope of the free surface w. r. to channel bottom. The general di0fferential 

equation for gradually varied flow is given by, 
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Where, 
dx

dy
 Represent the slope of the water surface with respect to bottom of the channel S0 

and Sfrepresent bed slope and friction slope of the channel respectively ‘’ is kinetic energy 

correction co efficient  ‘Fr’ is Froude number of flow which is given by, 
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      Eq…3.31 

The above equation is used to describe the various types of water surface profiles that occur in open-

channels. This equation known as the equation of the gradually varied flow or the differential equation 

of gradually varied flow. It represents change in the depth of flow y with respect to the channel bottom 

(x – axis) for channel with constant width.  

a) If K = conveyance at any depth y; K0 = conveyance corresponding to normal depth yo, then 

miACQ =  

mACkwhereSKQ f ==  

fS

Q
K =  

)flowuniform(
S

Q
K

0

0 =     Eq…3.32 
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S

Sf =       Eq. ..3.33 

Similarly, if “Z” is section factor at depth ‘y’;  

Zc = Section factor at critical depth yc 
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 Using GVF equation and equation 3.2.3,  
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     Eq. ..3.35 

This equation is helpful in developing direct integration techniques. 

(b) If Qn represents normal discharge at a depth y and Qc represents the critical discharge at same 

depth ‘y’. gZQSKQ Cn == 0  

Use these conditions Eq 3.30 can be written as, 
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c) Another form of Eq.(3.30) is 

fSS
dx

dE
−= 0

     Eq. ..3.36 

This Eq.3.36 is called differential - energy equation of GVF. This equation is helpful in developing 

numerical techniques for GVF profiles. 

 

Q10. Draw the specific energy curve and explain. 

Ans: The specific energy in a channel section is defined as the energy per unit weight of water 

measured with respect to channel bottom.The specific energy E in a channel section or energy head 

measured with respect to the bottom of the channel at the section is 

E = y + 
g

V

2

2

    

Where ‘’ is a coefficient that takes into account the actual velocity distribution in the Particular 

channel section, whose average velocity is ‘V’. The coefficient ‘’ can vary from a minimum of 1.05 -

for a very uniform distribution- to 1.20 for a highly uneven distribution. Nevertheless in a preliminary 

approach it can be used  = 1, Eq.1 becomes, E = y + 
g

V

2

2

 



A channel section with a water area A and a discharge Q, will have a specific 

Energy    E = y +  
2

2

2gA

Q
 

Above equation shows that given a discharge Q, the specific energy at a given section, is a function of 

the depth of the flow only. When the depth of flow y is plotted, for a certain discharge Q, against the 

specific energy E, a specific energy curve, with two limiting boundaries, like the one represented in 

figure is obtained. The lower limit, AC, is asymptotic to the horizontal axis and the upper, AB, to the 

line E=y. The vertex point A on the specific energy curve represents the depth y at which the discharge 

Q can be delivered through the section at a minimum energy. For every point over the axis E, greater 

than A, there are two possible water depths. At the smaller depth the discharge is delivered at a higher 

velocity ñ and hence at a higher specific energy of flow known as super-critical flow. At the larger depth 

the discharge is delivered at a smaller velocity but also with a higher specific energy, a flow known as 

sub critical flow. In the critical state the specific energy is a minimum, and its value can therefore be 

computed by equating the first derivative of the specific energy (equation 2.36) with respect to is zero.  

01
3

2

=+−=
dy

dA

gA

Q

dy

dE
 

The differential water area near the free surface, dA/dy = T, where T is the top width of the channel 

section. 

By definition D = 
T

A
 

The parameter D is known as the ‘hydraulic depth’ of the section, and it plays a big role in the studying 

the flow of water in a channel. Substituting in equation (2.37) 
dy

dA
 =

T

A
 replaced by D: 
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The quantity 
rF

gD

V
==1  is dimensionless and known as the Froude’s number 

 

 

 

 

 

 

 

 

3.6 Classification of Surface profiles- simple Problems.              

Normal depth (yn):  



 It is defined as the depth of flow at which a given discharge flows as uniform flow in a given 

channel. 

Critical depth (yc):  

It is defined as a depth of flow at which specific energy is minimum. In a given channel yn and yc are 2 

fixed depths if Q, n and S0 are fixed. Also, there are 3 possible relations between yn and yc. 

as i)   yn>yc 

 ii)   yn<yc 

 iii)  yn = yc 

Further there are 2-cases where yn does not exist. 

i) When the channel bed is horizontal (S0 = 0) 

ii) When the channel has an adverse slope (S0 is negative) 

Based on the above the channel is classified into 5-categories. 

 

For each 5-categories lines representing critical depth & normal depth (if exists) can be drawn in 

longitudinal section. This would divide the whole flow space in to 3-regions. 

 

Zone 1: space above both the lines (NDL & CDL)  

 

Zone 2: space between upper line and lower line  

 

Zone 3: space between lower line and the channel bottom 

 

Zone 1: y>yn>yc 

 

Zone 2: yn>y>yc 

 

Zone 3: yn>yc>y 

Figure 3.10 Zonal classifications of water surface profiles 

1 

2 

3 



 

Water surface longitudinal profiles can be characterised according to bottom slope So.  According e.g. 

to Graf and Altinakar (1998) five different cases can be distinguished: 

• M : Channels on mild slope; So< SC 

• S : Channels on steep slope; So> SC 

• C : Channels on critical slope; So = SC 

• H : Channels on horizontal slope So = 0 

• A : Channels on adverse slope So< 0 

 

Channel beds can be classified as mild (M), steep (S), critical (C), horizontal (H) (SO = 0), or adverse (A) 

(SO< 0).  To determine the classification of a channel bed, the normal depth yn is compared with the 

critical depth yc.   

  

 Mild:     yn>yc 

  

 Steep:     yn<yc 

  

 Critical:     yn=yc 

 

Figure 3.11 Classifications of Channel beds 

Horizontal and adverse slopes are special because no normal depth exists for them.  How flow-

transitions through gradually varied flow depends on the relative position of the depth (y) to the 



normal depth (yn) and the critical depth (yc).  The Table-3.1 gives details of water profile type, 

nomenclature and its main characteristics based on the slope of the bed  

Table-3.1 Water Profile Classification based on Slopes 

Sl. 

No. 

Channel category Symbol Characteristics condition Remarks 

1. MS M y0>yc Sub-critical flow 
at normal depth 

2. SS S yc> y0 Super-critical 
flow at normal 
depth 

3. CS C y0 = yc Critical flow at 
normal depth 

4. HS H S0 = 0 Can’t sustain 
uniform flow 

5. AS A S0< 0 Can’t sustain 
uniform flow 

Figure 3.12 Gradually Varied Flow Profiles: 

In mild slopes (M), the bottom slope is smaller than the critical slope SC.   

Type M flow: 



 

Figure 3.13    Different flow types. 

In long prismatic (constant cross-sectional geometry) channels, flowing water will attempt to 

reach the "normal depth" (also known as the "uniform flow depth").  Normal depth is the water 

depth determined using Manning's equation (please see our other web page for design of 

trapezoidal channels using Manning's equation).  A gradually varied flow (GVF) profile is a 

plot of water depth versus distance along the channel as the water depth gradually achieves 

normal depth.  A GVF computation in a trapezoidal channel involves starting at a known depth 

Ys and making successive water depth computations at small distance intervals.  The method 

involves the continuity equation and energy slope equations. The  calculations based on the 

solution of gradually varied flow equation initially computes normal depth, critical depth, and 

GVF profile type.  Then, it computes the water depth profile.   

The calculation also displays channel properties (depth, velocity, Froude number, etc.) at a 

desired specific location Xp.. A GVF profile is also known as a water depth profile, backwater 

calculation, and non-uniform flow computation.  It is for steady state flows (discharge remains 

constant). 

The flow depth ‘y’ increase with distance if 
dx

dy
 is positive, (the profile is known as backwater curve) 

and ‘y’ decreases with distance if 
dx

dy
 is negative, (the profile is known as draw down curve). Thus by 



determine the signs of the numerator and denominator of the equation 
dx

dy
 =

2
0

1 )F(

SS

r

f

−

−
; we can say 

whether the flow depth for a particular profile increases (or) decrease with depth. 

 

We already known that for uniform flow Sf = Sw = S0 when y = yn 

 

It is clear from Manning’s (or) Chezy’s formula for a given “Q”   

 

 Sf> S0 if y <yn 

 Sf< S0 if y >yn 

 

By using these inequalities, we can determine sign of numerator of above equation. Similarly Fr> 1 

(super critical) or Fr< 1 (sub critical) we can determine the sign of denominator.  

 

We can discuss how surface profile approaches the normal and critical depths and channel bottom. 

 
dx

dy
> 0; i) y >yn and y >yc 

   ii) y <yn and y <yc 

 
dx

dy
< 0; i) yc> y >yn 

   ii) yn> y >yc 

Further  

i) As y →yn; Sf→ S0 

 
dx

dy
 → 0 provided Fr  1 (flow is not critical) 

in other words surface profile approaches NDL asymptotically  

ii) As y →yc; Fr→ 1  denominator tends to 0 



dx

dy
 Tends to ‘ ’, which means water surface profile approach the critical depth line 

vertically. (Physically impossible, water surface has a sharp curvature, hydrostatic pressure is not 

possible) hydraulic jump will occur. 

iii) As y → ; V → 0; consequently both Fr and Sf tends to 0  

( 0====
gy

v
F;RScv;

y

q
v ef ) 

dx

dy
 → S0 (small) which means, water surface meets a very large depth as a horizontal asymptote. 

Based on this information, various possible GVF profiles are grouped into 12 types (Table 3.2). The 

characteristics shapes and end conditions of all these profiles are indicated in the figs.  

Table-3.2 Classification of GVF profiles 

Channel Region Condition Type Remarks 

Mild slope 

1 

2 

3 

y > y0>yc 

y0> y >yc 

y0>yc> y 

M1 

M2 

M3 

Backwater 

Draw down 

Backwater 

Steep slope 

1 

2 

3 

y >yc> y0 

yc> y > y0 

yc> y0> y 

S1 

S2 

S3 

Backwater 

Draw down 

Backwater 

Critical slope 
1 

3 

y > y0 = yc 

y < y0 = yc 

C1 

C3 

Backwater 

Backwater 

Horizontal bed 
2 

3 

y >yc 

y <yc 

H2 

H3 

Draw down 

Backwater 

Adverse slope 

(imaginary) 

2 

3 

y >yc 

y <yc 

A2 

A3 

Draw down 

Backwater 

 

 

 

 

3.4. Feature of Open Channel flow profiles: 



a) Type M - profiles: 

The most common type of GVF profiles is M1 type which is sub-critical flow condition. Obstructions to 

flow such as weirs, dams, and control structures produce M1 back water curves. 

 

Fig 3.14 Type M - Profile (Back Water curve) 

M2 profiles occur at a sudden drop in the bed of channel and at the canal outlet into pools. 

 

Fig 3.15 Type M - Profile (Draw Down Curve) 

When a supercritical stream enters a mild channel the M3 type of profile occurs. The flow leading from 

a spillway or a sluice to a mild slope forms an example. (Hydraulic jump) 

 

 

   Fig. 3.16 Hydraulic Jump 

 

b) Type S - profile: 



The S, profile is produced when the flow from a steep channel is terminated by a deep pool created by 

an obstruction (wear (or dam). At the beginning the flow changes from (super critical) flow to sub-

critical flow thro a hydraulic jump.) 

 

Fig 3.17 Type S - Profile  

S2 type profile occurs at the entrance region of a steep channel leading from a reservoir and a brake of 

grade from mild slope to steep slope. 

c) Critical, Horizontal and Adverse slope: 

 

Fig 3.18 Critical, Horizontal and Adverse slope 

 

Fig 3.19 Steep Slope Profiles 



Free flow from sluice gate with a steeper slope on its d/s is of S3 type. S3 curve also occurs – flow exits 

from steeper slope to a less steep slope. 

Type C profiles: 

 C1 and C3 profiles are very rare and highly unstable. 

Type H profile: 

There is no region 1 for horizontal channel as y0→ . The H2 and H3 profiles are similar to M2 and M3 

profiles. However H2 curve has a horizontal asymptote. 

 

Fig 3.20 Horizontal Profiles 

Type A - profile: 

 

 

Fig. 3.21 Adverse Profiles 

Adverse slopes are rather rare and A2 and A3 curved are similar to H2 and H3 curves. 

 

 



 

 

 

3.5. Draw Down and Back Water Curves: 

The general differential equation for gradually varied flow is given by, 

 21 r

fo

F

SS

dx

dy

−

−
=   Eq…3.30 

Where, 
dx

dy
 Represent the slope of the water surface with respect to bottom of the channel S0 

and Sfrepresent bed slope and friction slope of the channel respectively ‘’ is kinetic energy 

correction co efficient  ‘Fr’ is Froude number of flow which is given by,
rF  =

gD

V
 

3.5.1 Backwater Curve:For a backwater curve,
dx

dy
is positive. For this condition, the above equation 

indicates two possible cases: 

(i) ( ) ( ) 010
2

0 −− re FandSS and 

(ii) ( ) ( ) 010
2

0 −− re FandSS  

These two conditions are combined together represents three surface profiles M1, S1 and S3 types.  

Analysis of Case (i) 

Profile M1:  cn yyy   

Profile S1:  nc yyy   

Analysis of Case (ii) 

Profile S3: cn yyy   



3.5.2 Drawdown Curve:For a drawdown curve,
dx

dy
is negative. For this condition, the above equation 

indicates two possible cases: 

(i) ( ) ( ) 010
2

0 −− re FandSS and 

(ii) ( ) ( ) 010
2

0 −− re FandSS  

These two conditions are combined together represents three surface profiles    S2 and M2 types.  

Analysis of Case (i) 

Profile S2:  nc yyy   

Analysis of Case (ii) 

Profile M2: cn yyy   

3.6 Analysis of Open Channel Flow profile:  

 The process of identification of possible flow profiles as a prelude to quantitative computations 

is known as analysis of flow profile. It is essentially a synthesis of the information about the GVF profiles 

and control sections discussed in the previous section. 

 A channel carrying a gradually-varied flow can in general contain different prismoidal-channel 

sections of varying hydraulic properties. There can be a number of control sections of various at various 

locations. To determine the resulting water-surface profile in a given case, one should be in a position 

to analyze the effects of various channel sections and controls connected in series. 

3.6.1 Break in Grade: 

 Simple situations of a series combination of two channel sections with differing bed slopes are 

considered. In Fig 3.15, a break in grade from a mild channel to a milder channel is shown. It is 

necessary to first draw the critical-depth line (CDL) and the normal-depth line (NDL) for both slopes. 

Since, yc does not depend upon the slope (as Q=constant), the CDL is at a constant height above the 

channel bed in both slopes. The normal depth y01 for the mild slope is lower than that of the milder 

slope. (y02). In this case, y02 acts as a control similar to the weir or spillway case and an M1 backwater 

curve is produced in the mild-slope channel. Various combinations of slopes and the resulting GVF 

profiles are presented in Fig. 5. 



 In the examples indicated in Fig 5, the section where the grade changes acts as a control 

section and this can be classified as a natural control. It should be noted that even though the bed 

slope is considered as the only variable in the above examples, the same type of analysis would hold 

good for channel sections in which there is a marked change in the roughness characteristics with or 

without a change in the bed slope. A long reach of unlined canal followed by a lined reach serves as a 

typical example for the same.  

Serial Combination of channel sections: 

 To analyze a general problem of any channel sections and controls, the following steps are to 

be adopted: 

• Draw the longitudinal section of the systems. 

• Calculate the critical depth and normal depth to draw CDL & NDL 

• Make all the controls- both the imposed as well as natural controls. 

• Identify the possible profiles. 

 



Figure 3.22 Water surface Profiles based on Break in Grade 

 

Figure 3.23 Water surface Profiles based on Break in Grade 

3.6.2 Control Section: 

 A Control section is defined as a section in which a fixed relationship exists between the 

discharge and depth of flow. Weirs, spillways, sluice gates are some typical examples of structures 

which give rise to control sections. The critical depth is also control point. However, it is effective in a 

flow profile which changes from sub-critical to supercritical flow. In the reverse case of transition from 

supercritical flow to sub-critical flow, a hydraulic jump is usually formed bypassing the critical depth as 

a control point. Any GVF profile will have at least one control section. 



 

Figure 3.24 Water surface Profiles at Control Section 

 

In the synthesis of GVF profile occurring in serially-connected channel elements, the control sections 

provide a key to the identification of proper profile shapes. A few typical control sections are indicated 

if Fig 4.5 (6). It may be noted that sub-critical flows have controls in the downstream end while 

supercritical flows are governed by control sections existing at the upstream end of the channel 

section. 

 

 

 


