
Bearys Institute of Technology

Lands end, Near Mangaluru University Innoli, Mangaluru - 574153

DESIGN OF RCC STRUCTURES LAB (BCV601)

DEPARTMENT OF CIVIL ENGINEERING

Prepared by: Dr. PURUSHOTHAMA C.T.

Syllabus

Subject Code: BCV601 CIE Marks: 20

Syllabus

PRACTICAL COMPONENT OF IPCC (May cover all / major modules)

SI.NO	Experiments
1	Calculation of deflection of singly reinforced beam using Excel
2	Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details
3	Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details
4	Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.
5	Design of a cantilever beam using Excel and draw the reinforcement
6	Design a simply supported RCC one way slab with intermediate support and draw the reinforcement details
7	Design a two-way slab for the given data and prepare Bar bending schedule
8	Design a short axially loaded RC column using Excel
9	Design the reinforcement for RCC square column with isolated square footing
10	Design the reinforcement for RCC circular column with isolated square footing

INDEX

SL NO	NAME OF THE EXPERIMENT	PAGE NO
1	Calculation of deflection of singly reinforced beam using Excel	4
2	Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details	5
3	Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details	6
4	Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	7
5	Design of a cantilever beam using Excel and draw the reinforcement	8
6	Design a simply supported RCC one way slab with intermediate support and draw the reinforcement details	9
7	Design a two-way slab for the given data and prepare Bar bending schedule	10
8	Design a short axially loaded RC column using Excel	11
9	Design the reinforcement for RCC square column with isolated square footing	12
10	Design the reinforcement for RCC circular column with isolated square footing	13

Calculation of deflection of singly reinforced beam using Excel

2	1.A Rectangu	lar simpl	y sup	ported l	oeam o	of spa	an 5m is	300mn	n*650ı	mm in o	ross s	section	and
	is reinforced v												
3	the short term												
1	weight).Assur										3		
5		<u> </u>											
3	Solution												
7	b,m		0.0	3	300	mm							
8	fck,N/mm ²		20)									
9	L,m			_	5000	mm							
0	D,m		0.6	5	650	mm							
1	f _v ,N/mm ²		41	5									
	IL,kN/m		20)									
	Cover.m		0.0	_									
4	d		600	m									
	A _{st} , mm²		942.	5									
	Self weight			kN/m									
7		2		kN/m									
8				4 kN/m									
9	max bending		34000)									
0	l _{gr}	6.87E+	09	mm ⁴									
1	f _{or}	3	3.130	N/mm	2								
2	y _t		32	mm									
23	M _r	661317	10.43	Nmm									
4	E _c	22.3	360 69	N/mm	2								
25	E _s	2.00E+0)5 N/m	nm²									
26 27	m Let x be the dept	8.94 th of N-A fr	14 rom co	mpressi			ating mom	ent of c	ompres	ssion are	a to		
26 27 28	m	8.94 th of N-A fr	14 rom co	mpressi			ating mon	ent of c	ompres	ssion are	a to		
26 27 28 29	m Let x be the dept	8.94 th of N-A fr valent tens	14 rom co	mpressi			ating mon	ent of c	ompres	ssion are	a to		
26 27 28 29	m Let x be the dept moment of equiv	8.94 th of N-A fr valent tens	rom co sile are	mpressi			ating mom	ent of c	ompres	ssion are	a to		
26 27 28 29 30 31	m Let x be the dept moment of equiv bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9	8.94 th of N-A from the state of the state o	rom co sile are	mpressi	I-A,we g	get	ating mom	ent of c	ompres	ssion are	a to		
26 27 28 29 30 31 32	m Let x be the dept moment of equiv	8.94 th of N-A from the state of the state o	rom co sile are	mpressi	I-A,we o	et +c		ent of c	ompres	ssion are	a to		
26 27 28 29 30 31 32 33	m Let x be the dept moment of equiv bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9 x²=56.198(600-x	8.94 th of N-A from the valent tens 0.000	rom co sile are	mpressi	I-A,we g	et +c	1	ent of c	ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34	m Let x be the dept moment of equiv bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9	8.94 th of N-A from the valent tens 0.000	rom co sile are	mpressi	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36	m Let x be the dept moment of equiv bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9 x²=56.198(600-x	8.94 th of N-A fir valent tens 0 042.5(600- 0) 18.9=0	rom co ille are x)	mpression	I-A,we g	get +c	1		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36	m Let x be the dept moment of equiv bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9 x²=56.198(600-x x²+56.198x-337	8.94th of N-A fir valent tens	rom co ille are x)	mpression	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36 37	m Let x be the dept moment of equiv bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9 x²=56.198(600-x x²+56.198x-337*1 x	8.94 th of N-A fir valent tens 0 042.5(600- 0) 18.9=0	rom co ille are x)	mpression	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36 37 38	m Let x be the dept moment of equiv bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9 x²=56.198(600-x) x²+56.198x-337	8.94 th of N-A fir valent tens 0 042.5(600- 6) 18.9=0 157.6 2.04E+0	rom co iile are x) 67 mm	ompression a about N	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36 37 38	m Let x be the dept moment of equiv bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9 x²=56.198(600-x) x²+56.198x-337	8.94 th of N-A fir valent tens 0 042.5(600- 6) 18.9=0 157.6 2.04E+0	rom co cile are x)	ompression a about N	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36 37 38 40 41	m Let x be the dept moment of equivalent of	8.94 th of N-A fir valent tens 0.442.5(600- 5) 18.9=0 157.6 2.04E+0	mom coille are x) 67 mm 99 mm 1	ompression a about N	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 0 1 2	m Let x be the dept moment of equit bx²/2=m*A _{st} (d-x) 300x²/2=8.944*9 x²=56.198(600-x) x²+56.198x-337*1 x l _t b _w /b	8.94 th of N-A fir valent tens 0 042.5(600- 6) 18.9=0 157.6 2.04E+0	mom coille are x) 67 mm 99 mm 1	ompression a about N	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 0 1 2	m Let x be the dept moment of equivalent of	8.94 th of N-A fir valent tens 0.442.5(600- 5) 18.9=0 157.6 2.04E+0	mom coille are x) 67 mm 99 mm 1	ompression a about N	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 0 1 2	m Let x be the dept moment of equivalent of	8.94 th of N-A fir valent tens 0.442.5(600- 5) 18.9=0 157.6 2.04E+0	tal are mrr and tal are mrr an	ompression a about N	ax²+bx	get +c	1 56.198		ompres	ssion are	a to		
16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 11 12 13 14 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	m Let x be the dept moment of equivalent of	8.94 th of N-A fir valent tens 0.442.5(600- 5) 18.9=0 157.6 2.04E+0	744 rom co	impression a about N	ax²+bx a b c	+c	1 56.198 33718.9		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36 37 38 40 41	m Let x be the dept moment of equivalent of	8.94 th of N-A fir valent tens 0.442.5(600- 5) 18.9=0 157.6 2.04E+0	44 mm 44 45	ompression a about N	ax²+bx a b c	+c	1 56.198 33718.9		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	m Let x be the dept moment of equivalent of	8.94 th of N-A fir valent tens 0.442.5(600- 5) 18.9=0 157.6 2.04E+0	44 mm 44 mm 44 mm 44 mm 44 mm	mpression a about N	ax²+bx a b c	+c +c	1 56.198 33718.9		ompres	ssion are	a to		
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	m Let x be the dept moment of equivalent of	8.94 th of N-A fir valent tens 0.442.5(600- 5) 18.9=0 157.6 2.04E+0	44 mm 44 45 46	impression a about N	ax²+bx a b c	+c +c	1 56.198 33718.9			ssion are	a to		

Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details

1	1.A rectangular sec	tion of eff	ective size	e 300mm ³	500mr	n is use	ed as	a simpl	y suppoi	ted
2	beam for span 7m.	What max	dimum ud	can be a	lowed	on the b	eam	if the m	aximum	
3	percentage of steel									ı
4	steel.Determine the							oto uno		
5	Solution	arriount	JI SICCI IO	DC provid	Ju.					
6	Input		Values							
7	b, mm		300							
8	d, mm		500							
9	f _{ck} , N/mm2		20							
10	f _y , N/mm ²		415							
11										
12	The maximum amo	ount of ste	el permitte	ed is prov	ded me	eans it i	s des	igned a	s a bala	nced se
13										
14	x _u /d=x _{u li}	_m /d=0.48								
15	X _{u lim} =0.48*d		240							
16	0 11111		210							
17	M _u =M _{u lim} =0.36f _{ck} b	x _{u lim} (d-0	.42x _{u lim})							
18			207E+06							
19	M _u , kN-m		207	•						
20										
21	Let w _u be the desig	ned load i	n kN per r	neter leng	th.The	n maxin	num	momen	t	
22	= W _u L ² /8	$3 = w_u * (7^2)$	/8) = (49/8	3)w _u kN/m						
23	Equating it to the m	oment ca	rrying cap	acity of th	e balar	ice sec	tion N	l _{u lim} ,w	e ge	
24		wu=207								
25	w _u , kN/m		33.80							
26	Total load carrying	capacity in	n working	condition	is					
27	w, kN/m	22.53								
28										
	Self		(assuming 5	0mm cover)						
	Superimposed maximum		am							
	w, kN/m	18.406								
32	Amount of steel for balance	ed section ca	n he ohtaine	hv equation	compres	sive force	to			
			ii be obtaillet	a by equalify	compres	SIVE TOICE	10			
	tensile force as 0.36f _{ck} bx _u									
	0.36*20*300*0.48*500=0.8 A _{st} , mm ²									
		1,435.81								

Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details

	ESIGN (·			O., CE	<i></i>
INPUTS						
b	230	mm	d'	50	mm	
Effective span (I)	5.5	m				
LL	33.8	kN/m				
fck	20	N/mm2				
fy	415	N/mm2				
PROCESSING						
FIXING DEPTH						
d	458.33	m				
D	508.33	m				
Tota Load (W)	36.72	kN/m				
Wu	55.08	kN/m				
Mu	208.29	kN-m				
Mulim	135.28	kN-m				
Mu>=Mulim	TRUE		DOUBLY F	REINFORCED)	
Mu2	73.00	kN-m				
Ast2=Asc	495.18	mm2				
ptlim	0.96	%				

OUTPUT		
d	458.33 mm	
D	508.33 mm	
As1	1116.77 mm2	
Ast2	495.18 mm2	
Ast	1611.94 mm2	
Asc	495.18 mm2	

Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.

	yrı a bear	mora:	servive io	ad of 15kl	v/111.U	SE MZ	concre	ie anu F	C410
0.1.4									
Solution	-								
Input		Values							
Effective span, mm			7000						
Width of support,mm			230						
Service load,kN/m			15						
f _{ok} , N/mm ²			20						
f _y , N/mm ²			415						
1									
1. Cross sectional dir	nension								
3									
Take width of beam, I			250						
Take span to depth ra	atio 12 to	15							
i.e, d = L/15 to L/12									
d= 7000/15 to 7000/1	2								
3 d	466.67	5	83.33						
Therefore let us take									
d, mm			600						
1 Consider 20mm dia b		be use		sion reinfo	rceme	ent			
Effective cover,d', mr	n		40						
Total depth,D,mm			640						
4									
2 5#		7000							
2. Effective span,L,m		7							
3. Load calculation									
Calf waight of backs - ball	,								
Self weight of beam = bd		00E+06							
Self weight of beam ,kN/m	1 4.0	4							
Service load on beam,kN/	m	15							
Total load,kN/m		19							
New factored load/design	load,W _u =1	.5*19							
ricir idotorod roddradoligir		28.5							
W _u ,kN/m		20.0							
W _u ,kN/m									
W _u ,kN/m	_2/8	174.56							

44						
	5.To calculate M _{u lim}					
46	116 5 45 1					
	wkt for Fe 415steel,					
	$M_{u lim} = 0.138 f_{ck} bd^2$					
49	M _{u lim} , kNm	248.4E+06				
50		248.4				
	Here M _u <m<sub>u lim ,the section is u</m<sub>					
	Therefore Design on singly rein		tion			
54	6. Calculation of reinforcement	details				
	Tension reinforcement/main re	inforcement				
	wkt from Annex G1.1.1b pg 96					
	$M_u = 0.87*f_y*A_{st}*d(1-(f_y*A_{st}/(f_{ck}*b)$					
	174.5*106=0.87*415*A _{st} *600(1		50*600\\\			
58 59	17-1.0 100-0.07 410 A _{st} 000(1	-(+10 Ms#(20"2	00 000///			
60	a b	c				
61	29.96715 -216630	174.5E+06				
62						
63	A _{st} ,mm ²	923.50				
	Providing 20mm dia bars, no of					
65	66		2.94			
	67 No of bars		3			
	68 Therefore Provid	e 3 bars – 20		n		
	69					
	70 7. Check for she	ar				
	71	<u> </u>				
	72		99.75			
	73 Here V _u ,kN		99750			
	74 Nominal shear st	tress,T _v ,IV/mn	n=v _u /(b^a)			
	75 τ _ν ,N/mm2		0.665			
	76					
	77 Shear strength o	f concrete T				
	78 For $P_t = 100 A_{st}$	(b^d)				
	79 P _t		0.628			
	80 From Table 19,p	g 73 of IS456				
	81 T _o N/mm ²		0.52			
	82 Also T _{c max} ,N/mn	o ² for M20	0.52			
			2.8			
	83 concrete (from T					
	84 Here T _{c max} > T _v >	T _c				
85						
86	Therefore Shear design is n	neasured				
87	$V_{us} = V_u - V_s < V_s = (T_cbd)$)				
88	V _{us} , N	2.18E+	04			
89		2.1021				
	Selecting 8mm diameter ba	rs – 2 legged	vertical striups.			
91		- 33				
	T					

85							
86	Therefore Shear design is mea	sured					
87	$V_{us} = V_u - V_s < V_s = (T_c bd)$						
88	V_{us} , N	2.18E+04					
89							
90	Selecting 8mm diameter bars -	 2 legged ver 	tical striups,				
91	Spacing						
92							
93	1. $S_v = 0.87 f_y A_{su} d/V_{us}$						
94	S _v , mm	1,001.29					
95	$2.S_v = 0.87 f_y A_{sv}/(0.4b)$						
96	S _v , mm	362.97					
97	3. S _v =0.7d						
98	S _v , mm	420					
99	4. S _v , mm	300					
100	Provide 8mm dia 2 legged stiru	ps @ 250mm	center to cer	nter as shea	r reinforceme		
101	8.Check for development length	<u>h</u> (L _d)					
102							
103	From clause 26.2.1, The development	opment length	is given by				
104	L _d =øσ₅/4τ _{bd}						
105	L _d ,mm	940.234					

106						
107	9.Check for deflection					
108						
	From clause 22.2.1 ng no 24 IS	4E6-2000				
	From clause 23.2.1,pg no 34 IS					
110	$(L/d)_{max}=(L/d)_{basic}*K_t*K_c*K_f$ (whe	ere (L/d) _{basic} =	20)			
111						
112	To find K _t ,					
113	Refer fig 4 for pg 38 IS 456:200	0				
114	Pt	0.628				
115	F _s =0.58f _v A _{st} req/A _{st} pro					
	Fs ,N/mm2	236				
117	K _t	1.2				
	K _c and K _f		(SSB)			
			(000)			
	(L/d) _{max}	24				
120						
121	Now (L/d) _{act}	11.667				
122	Here					
123	$(L/d)_{act} < (L/d)_{max}$					
124	Therefore Safe in deflection					

Design of a cantilever beam using Excel and draw the reinforcement

1		DEGLESS OF S					
2		DESIGN OF C	ANTIL.	EVER BEAM			
	INPUTS						
	L=I	2.5					
	fck in N/mm2	20					
	fy in N/mm2	415					
	Width (b) in Mm	250					
)	Effective cover in mm	40					
0	Bearing in mm	250					
1	LL in kN/m	10					
2	Density of RCC in kN/m3	25					
3							
4	PRELIMINARY DESIGN						
5	(I/d)assumed	8					
6	Effective depth in mm	312.5					
7	Overall depth in mm	352.5					
8	LOAD CALCULATION						
9	LL	10					
0	DL	2.20					
1	Total (W)	12.20				-	
2	Wu = 1.5W in kN/m2	18.305					
3	BM & SF						
4	Effective Span (I) in m	2.5					
5	BM (Mu) in kN-m	57.20					
5	SF (Vu) in kN	45.76					
7	Limiting BM (Mulim) in kN	-n 68.36					
8	CHECK FOR SAFE DEPTH						
9	Mu <mulim< td=""><td>TRUE</td><td>Depth pro</td><td>vided is safe</td><td></td><td></td><td></td></mulim<>	TRUE	Depth pro	vided is safe			
0	REINFORCEMENT						
1	Main Steel						
2	CONSTANTS OF QUA EQU						
3	a	46823671.88					
4	b	1.76294E+11					
5	C	8.93784E+13					
6	b2-(4ac)			3395E+22			
7	squre root			.9747E+11			
8	Ast IN mm2		603.82				
9	Number of 12 mm dia bars						
0	Ast/ast		1.34				
1	No of bars		2				
2	SPACING iof 6mm dia nomin	al	300 mm				
3							
1		1					
5							
6		DI	ESIGN	DETAILS			
7							
8		Effective depth in m	nm	312.5			
9		Overall depth in mn		352.5			
0		Mu in kN-m		57.20			
1		Mulim in kN-m		68.36			
2		Main Steel in mm2		603.82			
3		Spacing of stirrups		300	mm		
		Spacing of stirrups		300	11/11/11	 	

Design a simply supported RCC one way slab with intermediate support and draw the reinforcement details

2		DESIGN OF	ONE	WAV ST AT	2		
3		DESIGN OF	ONE	VAI SLAI	,	_	 _
	INPUTS						
	Lx in m	3					
	Ly in m	7			_		
7	fck in N/mm2	20					1
3	fy in N/mm2	415					
)	Width (b) in m for design	1					
0	Effective cover in mm	25					
1	Bearing in mm	250					
2	LL in kN/m2	3					
.3	Density of RCC in kN/m3	25					
.4	Finishing Load in kN/m2	1					
.5							
6	SLAB TYPE						
7	Ly > 2Lx ONE WAY SLAB	TRUE					
8	PRELIMINARY DESIGN						
9	(I/d)assumed	25					
0	Effective depth in mm	120					
1	Overall depth in mm	145					
2	LOAD CALCULATION						
.3	LL	3					
14	DL	3.625					
25	FL	1					
26	Total (W)	7.625					
27	More 1 EM in Int/m2	11 420					
28	Wu = 1.5W in kN/m2 BM & SF	11.438					
28 29	BM & SF Effective Span (I) in m	3.12					
28 29 30	BM & SF Effective Span (I) in m BM (Mu) in kN-m	3.12 13.92					
27 28 29 30 31	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN	3.12 13.92 17.84					
28 29 30 31	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m	3.12 13.92					
28 29 30 31 32 33	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH	3.12 13.92 17.84 40.32					
28 29 30 31 32 33 34	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim< td=""><td>3.12 13.92 17.84 40.32</td><td>Depth pro</td><td>vided is safe</td><td></td><td></td><td></td></mulim<>	3.12 13.92 17.84 40.32	Depth pro	vided is safe			
28 29 30 31 31 32 33 34 44	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim reinforcement<="" td=""><td>3.12 13.92 17.84 40.32</td><td>Depth pro</td><td>vided is safe</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32	Depth pro	vided is safe			
28 29 30 31 31 32 33 34 35 36	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim main="" reinforcement="" steel<="" td=""><td>3.12 13.92 17.84 40.32</td><td>Depth pro</td><td>vided is safe</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32	Depth pro	vided is safe			
28 29 30 31 31 32 33 33 34 43 35 36	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim reinforcement<="" td=""><td>3.12 13.92 17.84 40.32</td><td>Depth pro</td><td>vided is safe</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32	Depth pro	vided is safe			
28 29 30 30 31 32 33 34 4 335 36 37 38	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim a<="" constants="" equ="" main="" of="" qua="" reinforcement="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE</td><td>Depth pro</td><td>vided is safe</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE	Depth pro	vided is safe			
28 29 30 30 31 32 33 34 35 36 36 37 38 39 39	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim a="" b<="" constants="" equ="" main="" of="" qua="" reinforcement="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>Depth pro</td><td>vided is safe</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	Depth pro	vided is safe			
28	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim a="" b="" c<="" constants="" equ="" main="" of="" qua="" reinforcement="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE</td><td></td><td></td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE					
228 229 30 31 32 33 34 35 36 37 38 39 40	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim a="" b="" b2-(4ac)<="" c="" constants="" equ="" main="" of="" qua="" reinforcement="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4</td><td>11009E+21</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4	11009E+21			
28 29 30 30 31 32 33 34 35 36 37 38 39 40 41 42	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim a="" b="" b2-(4ac)="" c="" constants="" equ="" main="" of="" qua="" reinforcement="" root<="" squre="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4</td><td></td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4				
228 229 330 331 332 333 334 335 336 337 338 339 340 441 442 443	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim a="" ast="" b="" b2-(4ac)="" c="" constants="" equ="" in="" main="" mm2<="" of="" qua="" reinforcement="" root="" squre="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4</td><td>11009E+21</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4	11009E+21			
228	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim 10mm="" a="" ast="" b="" b2-(4ac)="" bars<="" c="" constants="" dia="" equ="" in="" main="" mm2="" of="" qua="" reinforcement="" root="" spacing="" squre="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4 917 341.37</td><td>11009E+21</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4 917 341.37	11009E+21			
28	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim 1000ast="" 10mm="" a="" ast="" ast<="" b="" b2-(4ac)="" bars="" c="" constants="" dia="" equ="" in="" main="" mm2="" of="" qua="" reinforcement="" root="" spacing="" squre="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4 917 341.37 229.96</td><td>11009E+21</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4 917 341.37 229.96	11009E+21			
28	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim 1000ast="" 10mm="" 3d<="" a="" ast="" b="" b2-(4ac)="" bars="" c="" constants="" dia="" equ="" in="" main="" mm2="" of="" qua="" reinforcement="" root="" spacing="" squre="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4 917 341.37 229.96 360</td><td>11009E+21</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4 917 341.37 229.96 360	11009E+21			
228	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim 1000ast="" 10mm="" 300mm<="" 3d="" a="" ast="" b="" b2-(4ac)="" bars="" c="" constants="" dia="" equ="" in="" main="" mm2="" of="" qua="" reinforcement="" root="" spacing="" squre="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4 917 341.37 229.96 360 300</td><td>11009E+21</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4 917 341.37 229.96 360 300	11009E+21			
228	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim 1000ast="" 10mm="" 300mm="" 3d="" a="" ast="" b="" b2-(4ac)="" bars="" c="" constants="" dia="" equ="" in="" main="" mm2="" mm<="" of="" qua="" reinforcement="" root="" spacing="" squre="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4 917 341.37 229.96 360</td><td>11009E+21</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4 917 341.37 229.96 360	11009E+21			
228	BM & SF Effective Span (I) in m BM (Mu) in kN-m SF (Vu) in kN Limiting BM (Mulim) in kN-m CHECK FOR SAFE DEPTH Mu <mulim 1000ast="" 10mm="" 300mm<="" 3d="" a="" ast="" b="" b2-(4ac)="" bars="" c="" constants="" dia="" equ="" in="" main="" mm2="" of="" qua="" reinforcement="" root="" spacing="" squre="" steel="" td=""><td>3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11</td><td>8.4 917 341.37 229.96 360 300</td><td>11009E+21</td><td></td><td></td><td></td></mulim>	3.12 13.92 17.84 40.32 TRUE 17980290 1.03982E+11	8.4 917 341.37 229.96 360 300	11009E+21			

48	SPACING in mm	229	0.96		
49	DISTRIBUTION STEEL				
50	Ast IN mm2	<u> </u>	174		
51	Spacing of 8mm dia bars				
52	1000ast/Ast	288	3.74		
53	5d		600		
54	450 mm		450		
55	SPACING in mm	288	3.74		
56					
57					
58					
59		DESIG	N DETAILS		
50					
51		Effective depth in mm	120)	
52		Overall depth in mm	145	5	
53		Mu in kN-m	13.92	2	
54		Mulim in kN-m	40.32	2	
65		Main Steel in mm2	341.37	7	
56		Disrtbution Steel in mm2	174	1	Ĭ
57		Spacing of 10mm dia main l		5	
58		Spacing of 8mm dia dist bar	288.74	1	
59					

Design a two-way slab for the given data and prepare Bar bending schedule

	DI	ESIGN	I OF I	WO V	VAY S	LAB	
INPUTS							
Lx	4.5	m	I/d(Lx/d)	28			
Ly	5.5	m	b	1000			
LL	3	kN/m2					
FFL	0.6	kN/m2					
CFL	0.4	kN/m2					
fck	20	N/mm2					
fy	415	N/mm2					
PROCESSING							
Type of Slab	TWO WAY	SIAB)					
PRELIMINARY DESIGN	. WO WAT	JEAU					
d=Lx/28		160.71					
D=d+25		185.71					
Effective span (lx)=Lx+d			4.66	m			
Effective span (ly)=Lx+d			5.66	m			
LOAD CALCULATION							
TOTAL LOAD(LL+FFL+CFL+DL)			8.64	kN/m2			
Wu= 1.5W			12.96	kN/m2			
BM'S							
Mux=\alphax*Wu*lx^2		23.66		kN-m			
Muy=αy*Wu*lx^2		16.62		kN-m			
Mulim=k*fck*b*d^2		72.32		kN-m			

Mu <mulim< th=""><th>Depth provided is okay</th><th></th><th></th></mulim<>	Depth provided is okay		
Reinfocement for shorter span			
		a	24080745.54
		b	-1.86512E+11
		С	7.60357E+13
	Inside	SQRT	2.74627E+22
Astx	431.74	mm2	
Reinfocement for longer span			
		a	24080745.54
		b	-1.86512E+11
		С	5.3406E+13
	Inside	SQRT	2.96424E+22
Asty	297.79	mm2	
Spacing of 10 mm dia bars			
along shorter span is least of	181.823		
	482.14		
	300		
SPACING	181.82	mm c/c	
Spacing of 8 mm dia bars			
along longer span is least of	168.71		
	482.14		

SPACING	168.71	mm c/c	
OUTPUT			
EFFECTIVE DEPTH	160.71 mm		
OVERALL DEPTH	185.71 mm		
Mux	23.66 kN-m		
Muy	16.62 kN-m		
Mulim	72.32 kN-m		
Astx	431.74 mm2		
Spacing if 10mm main bars	181.82 mm		
Asty	297.79 mm2		
Spacing if 8mm dist bars	168.71 mm		

Design a short axially loaded RC column using Excel

d	н	D	L	D	_ C	Г	ا ا	П	I	J	N	L	ĮΥĮ	IN IN	U	P
1							DEC	TON O	T COL		otton:	COLI				
2							DES	SIGN C	F SQU	AKE	SHOK.	COL	UMIN			
3																
4					INPUTS											
5						d (P) in kN			1000							
6					fek in N/mm2			25								
7					fy in N/m				415							
8					Dia of Lo	ngitudinal	bars in mr	•	16							
9						iteral ties in			8							
10					Percenta	age of stee	elin%		1.5							
11																
12					DESIGN	1										
13					Factored	Load			1500							
14					Asc in te	rms of A			0.015	Α	1					
15					Ac in terr	ns of A			0.985	Α	+	1				
16					Area of C	7S of Colu	ımn (A)-mr	1	06984.29							
17					Side of the	ne square	column-m		327.08							
18					Asc - mn	n2			1604.76							
19					Area of c	ne bar-mi	п2		200.96		_					
20					Number	of 16 mm d	ia bars		7.99		+	1				
21					Leastlat	eral dimen	sion		327.08		_					
22					16 time d	ia of longit	udinal bai	1	256.00		1					
23						dia of late			384			1				
24					Spacing	of lateral t	ies in mm		256.00		+	1	 		†	
25											1					

Design the reinforcement for RCC square column with isolated square footing

	DESIGN O	F ISOL	ATE	D SQ	UARE	FOC	TING
INPU							
	Column size x & y		mm				
			mm				
	Factored Load Pu	1500					
	SBC		kN/m2				
	fck		N/mm2				
	fy	415	N/mm2				
PROCE							
	NSION OF FOOTING						
	equired= (1.1P/SBC)	5.95	m2				
то	FIX B&L OF FOOTING						
	L=SQRT(A/(x/y))	2.44					
	B=(A/L)	2.44	m				
ULTI	IMATE SOIL PRESSURE						
	qu=Pu/A	252.27	kN/m2				
FIX D	EPTH BY SINGLE SHEAR						
	NR	539.46783					
	DR	1.1445455					
	d	471.34	mm				
	D=d+50	521.34	mm				
CH	HECK DEPTH FOR BM						
	(L-y)/2		1.07				
	Mu		144.20	kN-m			
	Mulim		622.05	kN-m			
	Mu <mulim< td=""><td></td><td>TRUE</td><td>D</td><td>epth provid</td><td>ed is OKAY</td><td></td></mulim<>		TRUE	D	epth provid	ed is OKAY	
CHEC	K DEPTH FOR PUNCHING	SHEAR					
	Vu		1349.91				
	τν		0.93	N/mm2			
	τα		1.12	N/mm2			
	τν<τc		TRUE	Depth	provided is	OKAY	
	OUTPUT						
	LENGTH OF FOO	TING	2.44	m			
	WIDTH OF FOOT		2.44				
	EFFECTIVE DEF		471.34				
	OVERALL DEP		521.34				
	OVENALEDEP		321.34	THE STATE OF THE S			

Design the reinforcement for RCC Rectangular column with isolated rectangular footing

	INPUTS									
		ımn size x & y	300	mm						
	0010			mm						
	Fact	ored Load Pu	1500							
		SBC		kN/m2						
		fck		N/mm2						
		fy		N/mm2						
	PROCESSIN	•		,						
FIXIN		ON OF FOOTING								
	Aregui	red=(1.1P/SBC)	5.95	m2						
		B&L OF FOOTING								
	L=S	QRT(A/(x/y))	3.15	m						
		B=(A/L)	1.89	m						
	ULTIMA [*]	TE SOIL PRESSURE								
		qu=Pu/A	252.27	kN/m2						
	FIX DEPTI	H BY SINGLE SHEAR								
		NR	668.01842							
		DR	1.1445455							
		d	583.65	mm						
		D=d+50	633.65	mm						
		CHECK DEPTH FO	OR BM							
		(L-y)/2		1.32						
		Mu		221.11					_	
		Mulim		953.83		\	:	A 37		
	CHECK DE	Mu <mulim PTH FOR PUNCHING</mulim 		TRUE	L	pepin prov	ided is OK	AT.		
	CHECK DE	Vu	JAMEAN	1258.43						
		τν			N/mm2					
		τc			N/mm2					
		TV <tc< td=""><td></td><td>TRUE</td><td></td><td>provided</td><td>is OKAY</td><td></td><td></td><td></td></tc<>		TRUE		provided	is OKAY			
		27.70			Вери	p. 011020				
		OUTPUT								
		LENGTH OF FOO	TING	3.15						
		WIDTH OF FOOT	TING	1.89						
		EFFECTIVE DEF	PTH	583.65	mm					